MEMBANGUN APLIKASI PROGRAM OPTIMASI PENGELOLAAN AIR IRIGASI DENGAN VISUAL BASIC OF APLPLICATION (VBA) (STUDI KASUS PADA DAERAH IRIGASI BENDUNG MUHARA)

Supyan Solihudin Hidayat¹, Asep Kurnia Hidayat², Pengki Irawan³

^{1,2,3}Program Studi Teknik Sipil, Fakultas Teknik, Universitas Siliwangi

e-mail: <u>Supyans.hidayat@gmail.com</u>

Abstrak

Pengembangan program aplikasi optimasi pengelolaan air irigasi merupakan hal baru dalam dunia teknik sipil khusunya irigasi. Penelitian ini bertujuan untuk merancang sistem aplikasi optimasi pengelolaan air irgasi yang kemudian diberi nama OBLinP-APS v.01 dan menganalisis hasil dari aplikasi OBLinP-APS v.01. Metode optimasi yang digunakan dalam studi ini berbasis program linier yang dikombinasikan dengan teknik simulasi. Model optimasi dibentuk dengan cara mengombinasikan kelakuan sistem dengan tujuan sistem, selanjutnya dipilih algoritma yang cocok untuk diterapkan ke dalam model optimasi tersebut. Sedangkan untuk rancangan aplikasi pada studi ini menggunakan VBA (*Visual Basic for Application*) yang terdapat pada *Microsoft Office Excel* versi 2010. Hasil perancangan aplikasi sistem pengelolaan air irigasi hasilnya sama dengan perhitungan manual dan dapat digunakan untuk mempercepat proses perhitungan optimasi lahan. Sistem yang dibangun sudah bisa menghasilkan grafik walaupun pada prosesnya penyesuaian skala grafik harus dilakukan secara manual karena kekurangan dari program tersebut. Hasil perhitungan yang dihasilkan aplikasi tentu lebih detail dan rinci serta sesuai dengan kaidah hasil perhitungan manual, artinya hasil luaran dari aplikasi sama dengan hasil perhitungan manualnya.

Kata kunci : Aplikasi VBA, Bendung Muhara, irigasi, optimasi.

Abstract

The development of an application program for optimizing irrigation water management is new in the world of civil engineering, especially irrigation. This study aims to design an application system for optimization of irrigation water management which is then given the name OBLinP-APS v.01 and analyze the results of the OBLinP-APS v.01 application. The optimization method used in this study is based on linear programming combined with simulation techniques. The optimization model is formed by combining the behavior of the system with the objectives of the system, then the algorithm chosen is suitable to be applied into the optimization model. As for the application design in this study using VBA (Visual Basic for Application) found in Microsoft Office Excel version 2010. The results of the design of the application of irrigation water management system results are the same as manual calculations and can be used to accelerate the process of land optimization calculations. The system that was built was able to produce graphs although in the process of adjusting the scale of the graph must be done manually because of the shortcomings of the program. The calculation results generated by the application are certainly more detailed and detailed and in accordance with the rules of the results of manual calculations, meaning that the output results from the application are the same as the results of the manual calculations.

Keywords: VBA application, Muhara Weir, irrigation, optimization.

I. PENDAHULUAN

Indonesia merupakan negara agraris sehingga sangat wajar dilakukan pembangunan di bidang pertanian yang menjadi prioritas utama dalam agenda pembangunan nasional dan memberikan komitmen tinggi terhadap pembangunan ketahanan pangan. Hal itu sesuai dengan tuntutan UU No.7 tahun 1996 tentang pangan yaitu ketahanan pangan merupakan kewajiban pemerintah bersama masyarakat.[1] Ketahanan pangan diartikan sebagai kondisi

terpenuhinya pangan bagi rumah tangga yang tercermin dari tersedianya pangan yang cukup, baik dalam jumlah maupun mutunya, aman dan merata, serta terjangkau. Demi mencapai tujuan tersebut maka perlu dilakukannya langkahlangkah yang tepat untuk sistem irigasi supaya pada pelaksanaannya bisa sesuai yang diharapkan dan direncanakan.

Sistem irigasi dapat diartikan suatu kesatuan yang tersusun dari berbagai komponen, menyangkut upaya penyediaan, pembagian, pengelolaan dan pengaturan air dalam rangka meningkatkan produksi pertanian, untuk itu diperlukan upaya demi kelestarian sarana irigasi dan aset-asetnya yang ada, hal ini diperlukan pengelolaan aset irigasi yang optimal.[2]

Optimasi adalah subjek yang populer dalam studi sumber daya air. Metode ini telah digunakan dalam beberapa dekade sebagai solusi untuk perencanaan dan pengelolaan sistem sumber daya air. Mays & Tung (2002) telah menggunakan metode optimasi dalam sumber daya air untuk tahap perencanaan, desain, dan operasional. Salah satu teknik optimasi yang populer diterapkan oleh banyak peneliti dalam pengelolaan sumber daya air selama abad ke-21 adalah pemrograman linier (PL). Metode ini digunakan ketika variabel dan kendala dalam sistem sumber daya air memiliki bentuk fungsi linier.[3]

Model optimasi yang dimaksud adalah penyusunan model suatu sistem yang sesuai dengan keadaan nyata, yang nantinya dapat dirubah ke dalam model matematis dengan pemisahan elemen–elemen pokok agar suatu penyelesaian yang sesuai dengan sasaran atau tujuan pengambilan keputusan dapat tercapai.

Namun demikian, banyak kendala dalam proses pemodelan optimasi pengelolaan air irigasi yang disebabkan kurangnya penggunaan teknologi aplikasi. Untuk itu penelitian ini berupaya menggabungkan teknik hitungan yang telah digunakan untuk optimasi pengelolaan air irigasi dengan teknologi pemrograman. Tujuan dari pemrograman ini adalah untuk mempermudah dalam penginputan data yang kemudian diperoleh hasil hitungan terbaik. Aplikasi dan bahasa pemrograman yang digunakan adalah Visual Basic for Application (VBA) pada Microsoft Excel.

Microsoft Visual Basic for Applications (VBA)adalah sebuah turunan bahasa pemrograman Visual Basic yang dikembangkan oleh Microsoft dan dirilis pada tahun 1993, atau kombinasi yang terintegrasi antara lingkungan pemrograman (Visual Basic Editor) dengan bahasa pemrograman (Visual Basic) vang untuk memudahkan user mendesain dan membangun program Visual Basic dalam aplikasi utama Microsoft Office, yang ditujukan untuk aplikasi-aplikasi tertentu. Perangkat lunak (software) Microsoft Excel merupakan program Spreadsheet (kertas kerja), basis data (database), grafik dan macro (otomatisasi perintah atau program). Excel VBA yang merupakan singkatan dari Excel Visual Basic for Application adalah nama dari bahasa pemrograman Microsoft Excel. Dengan Microsoft Excel yang dapat berfungsi sebagai basis data, macro yang dapat mengotomatisasi perintah dapat digunakan untuk membuat program aplikasi.[4]

Berkat adanya kemampuan *Microsoft Excel* tersebut dapat digunakan untuk membuat aplikasi hitungan yang bisa digunakan oleh semua pekerjaan. Harapan dengan dibuatnya aplikasi perhitungan ini bisa mempermudah pekerjaan ataupun perhitungan yang mana jika dihitung dengan manual membutuhkan waktu yang lama.

II. BAHAN DAN METOLOGI

Lokasi

Pelaksanaan penelitian berlokasi di kampung Muhara terletak di Kecamatan Sukaratu, Kabupaten Tasikmalaya, Propinsi Jawa Barat, dengan titik koordinat bendung 7°16' 23.4"S 108°08' 59.8"E atau -7.273160, 108.149944.. Daerah irigasi Muhara merupakan salah satu irigasi yang bersifat lintas kabupaten / Kotamadya vaitu Kecamatan Sukaratu di Kabupaten Tasikmalaya dan Kecamatan Bungursari di Kotamadya Tasikmalaya. Jika ditempuh dengan menggunakan kendaraan roda empat dari Kota Universitas Siliwangi Tasikmalava memakan waktu sekitar 60 menit lalu dilanjutkan dengan berjalan kaki sekitar 20 menit.

E-ISSN: 2715-7296

Gambar 1. Lokasi Studi D.I. Muhara (Sumber: Google Earth)

Program Visual Basic for Application

Sejak tahun 1993, Excel telah memiliki bahasa pemrograman visual basic for application (VBA), yang dapat menambahkan kemampuan Excel untuk melakukan automatisasi di dalam aplikasi dan juga menambahkan fungsi-fungsi yang dapat didefinisikan oleh pengguna (user defined functions/UDF) untuk digunakan didalam worksheet. Secara umum visual basic for application (VBA) Microsoft Excel dapat diartikan sebagai program yang berisi rangkaian perintah untuk mengatur beberapa aspek pada aplikasi sehingga pekerjaan dapat menjadi lebih efektif dan efisien. Sesungguhnya VBA tidak hanya digunakan untuk Microsoft Excel, tetapi juga digunakan oleh beberapa produk Microsoft Office lainnya seperti Microsoft Word, Microsoft Acces dan Microsoft Power Point.[4]

Input Data

1. Lokasi

Lokasi merupakan data yang ditentukan diawal. Pada kasus ini ditentukan lokasi pada Daerah Irigasi Bendung Muhara yang mencakup tiga stasiun yaitu, Cigede, Tejakalapa, dan Cimulu. Sumber air yang digunakan irigasi berasal dari sungai dari kaki gunung Galunggung.

2. Luas Lahan Potensial

Lahan potensial adalah sebidang lahan yang dapat memberikan produk secara optimal pertahun persatuan luas. Umumnya lahan potensial dikaitkan dengan sektor pertanian sehingga lahan ini mempunyai kemampuan untuk lahan produksi. Pada kasus ini luas lahan potensial Daerah Irigasi Bendung Muhara yaitu 777 ha. [7]

3. Kebutuhan Air Irigasi di Lahan (KAI-L)

$$KAI - L = f(Et_c, P, WLR)$$

dengan:

KAI-L = debit/kebutuhan air irigasi di lahan kondisi saat penanaman padi,

Etc = evapotranspirasi tanaman

P = perkolasi

WLR = kebutuhan air untuk penggenangan

4. Curah Hujan Efektif

$$H_{80\%} = \frac{m}{m+1}, m = H_{80\%} x(n+1)$$

dengan:

H80% = curah hujan sebesar 80%

n = jumlah data

m = rangking hujan yang terpilih

HE padi = $(H_{80\%} \times 0,7)$ /periode pengamatan

HE palawija = $(H_{80\%} \times 0.5)$ /periode pengamatan

dengan:

HE = curah hujan efektif (mm/hari)

H80% = curah hujan dengan kemungkinan terjadi sebesar 80%

5. Debit Andalan

Debit andalah dihitung berdasarkan probabilitas dari sejumlah data pengamatan debit. Perhitungan debit andalan mengunakan rumus dari Weibull.

$$P = \frac{m}{m+1} \times 100\%$$

dengan:

P = Probabilitas terjadinya kumpulan nilai (%)

m = Nomor urut kejadian, dengan urutan variasi dari besar ke kecil

n = Jumlah data pengamatan debit

Akselerasi: Jurnal Ilmiah Teknik Sipil

Volume. 2, No. 2, Februari 2021 E-ISSN: 2715-7296

6. Keuntungan Tanaman Perhektar Pertahun

Tabel 1. Cost of Production dan Net Income Padi-Padi-
Padi perhektar

Hasil	Satuan
4,8	Ton/ha
4.000,00	Rupiah/Kg
19,20	Juta/ha
13,56	Juta/ha
5,64	Juta/ha
16,92	Juta/tahun
Rp16.922.100	
	Hasil 4,8 4.000,00 19,20 13,56 5,64 16,92 Rp16.92

Sumber: Hasil Perhitungan, 2019

Tabel 2. Cost of Production dan Net Income Padi-Padi-
Palawija per hektar

Uraian	Padi	Palawija	Satuan
Produksi	4,80	-	Ton/ha
Harga	4.000,00	-	Rupiah/ha
Hasil Produksi	19,20	24,66	Juta/ha
Biaya Produksi	13,56	19,24	Juta/ha
Pendapatan 1 periode musim tanam	5,64	5,42	Juta/ha
pendapatan 3 periode musim tanam	11,28	5,42	Juta
Jumlah	16,70		Juta/tahun
Total	Rp16.699.840,00		per tahun

Sumber: Hasil Perhitungan, 2019

Proses dan Formulasi Data

1. Kebutuhan Air Bersih di Sawah (KAI-P/NFR) $KAI - P = Et_c + P + WLR - HE_{80\%}$

Atau

$$KAI - P = KAI - L - HE_{80\%}$$

Dengan:
 $KAI P = Kehutuhan hersih$

KAI-P = Kebutuhan bersih air irigasi di sawah (mm/hari) Etc = penggunaan konsumtif

(mm/hari) WLR = Penggantian lapisan air (mm/hari) HE80% = curah hujan efektif (mm/hari)

2. Debit Kebutuhan Air Irigasi

Debit kebutuhan air irigasi satuan dirumuskan sebagai berikut:

 $QAI - P = (Et_c + P + WLR - HE_{80\%}).A$ Sedangkan debit air irigasi pengambilan : QAI - pt = f(KAI - P, Losses, Efisiensi)

Dengan:

3.

\mathcal{O}	
А	= luas area pesawahan (ha)
Losses	= kehilangan air di saluran (35%)
Efisiensi	= efisiensi sistem irigasi (65%)
Faktor K	-
	debit vang tersedia

Faktor $K = \frac{\text{debit yang tersedia}}{\text{kebutuhan air pengambilan}}$

4. Analisis Sistem untuk Optimasi Pengelolaan Air

Ada dua teknik analisis sistem yang biasa digunakan, yaitu teknik simulasi dan teknik optimasi, keduanya sering digunakan secara bersama-sama.[6]

Keuntungan produk pertanian dari irigasi area yang dapat dirumuskan sebagai berikut.[5]

$$MAX = \sum C_j X_j - Rgl_{ijT}$$

dengan:

- CijT = Keuntungan perhektar yang diperoleh dari setiap jenis tanaman I dengan jadwal tanam j pada satu musim tanam T (Rp/ha)
- XijT = Variabel keputusan (luas optimal dari setiap jenis tanaman I dengan jadwal tanam j pada satu musim tanam T) (ha)
- RglijT = Biaya resiko gagal lahan tanam dari setiap jenis tanaman I dengan jadwal tanam pada satu musim tanam T (Rp)

Benefit merupakan hasil dari mengalikan keuntungan / ha untuk setiap jenis tanaman dengan luas tanam dalam satu tahun musim tanam (harga produksi dianggap konstan untuk setiap jadwal penanaman). Benefit dihitung dengan rumus berikut:

$$B_{iT} = C_{iT} X_{iT}$$

dengan:

- BiT = *Benefit* tanaman I pada musim tanam T (Rp)
- CiT = Keuntungan tanaman I perhektar pada musim tanam T (Rp/ha)
- XiT = Luas tanam tanaman I pada musim tanam T (ha)

Pendekatan persamaan untuk biaya risiko kegagalan penanaman lahan untuk setiap jadwal penanaman j pada tahun efektif h% dan luas tanam X adalah sebagai berikut:

$$Rgl_{ihx} = In.Rga.(1 - (Re)^{\frac{QAI - pt}{Q_{andalam}}}).X.C$$

dengan:

U	
Rgljhx	= Biaya resiko gagal lahan
	tanam untuk jadwal tanam T pada
	hujan efektif h% dan luas tanam
	X ha (Rp),
ln	= indeks resiko gagal pemberian
	air,
Rga	= resiko gagal pemberian air,
Re	= reliabilitas,
QAI-pt	= kebutuhan air irigasi di
	bangunan pengambilan
	(m3/det),
Qandalan	= debit definitive rata-rata
	(m3/det),
Х	= luas lahan (ha),
С	= keuntungan tanaman per ha
	(Rp/ha).

Output Data

Data Input	Data Output
KAI-L, HE80%, luas lahan	KAI-P, QAI-p
Kecepatan Aliran, koef.	
Rembesan, panjang	Losses
saluran	
QAI-p, Losses	QAI-Pt
Q80%, QAI-Pt	Faktor k
Faktor k, QAI-Pt	QAI-Pk
Q80%, QAI-Pk	KKA
KKA, Q80%	Rgar, Rga, Re
Benefit/ha/th Baa	Benefit total, Rgl, Net
Denent/na/tii, Kga,	benefit (Optimasi)

Sistem Data

Sistem data merupakan langkah atau proses interaksi data-data yang dimasukan hingga akhirnya diperoleh hasil yang diinginkan. Sistem data menggambarkan proses dari awal hingga akhir.

Gambar 2. Sistem Data

Teknik Pengumpulan Data

Pengertian Data primer adalah sumber data penelitian vang diperoleh secara langsung dari sumber aslinya yang berupa wawancara, jajak pendapat dari individu atau kelompok (orang) maupun hasil observasi dari suatu obyek, kejadian atau hasil pengujian (benda) dan data sekunder dilakukan dengan dokumentasi, sumber data penelitian yang diperoleh melalui media perantara atau secara tidak langsung yang berupa buku, catatan, bukti yang telah ada, atau arsip baik yang dipublikasikan maupun yang tidak dipublikasikan secara umum. Data primer yang digunakan adalah biaya produksi padi dan harga gabah perkilo. Sedangkan data sekunder yang digunakan diantaranya (1) Data kecepatan aliran di saluran, (2) Data hasil perhitungan curah hujan efektif, (3) Data hasil perhitungan kebutuhan air irigasi satuan (KAI-L), dan (4) Data hasil perhitungan debit andalan.

Teknik Analisis Data

Aplikasi Visual Basic for Applications

Akselerasi: Jurnal Ilmiah Teknik Sipil

Volume. 2, No. 2, Februari 2021 E-ISSN: 2715-7296

(VBA) pada Microsoft Excel dapat dijalankan apabila menu developer sudah aktif. Apabila belum tersedia maka terlebih dahulu harus diaktifkan dengan langkah-langkah sebagai berikut:

- 1. Klik menu office button, pilih Excel Options
- 2. Akan ditampilkan jendela Excel Option
- 3. Pada kategori popular, beri tanda centang pada *Show Developer tab in the Ribbon*, lalu klik tombol OK.

Apabila menu *developer* telah aktif, selanjutnya dapat dilakukan pengkodean untuk membangunan perangkat lunak program optimasi pengelolaan air irigasi sesusai rumus yang ada.

Secara umum penelitian ini dilakukan untuk mempermudah dalam pengerjaan hitungan optimasi pengelolaan air irigasi. Penelitian dilakukan dengan membangun perangkat lunak *VBA Excel* dan data yang digunakan merupakan data dari hasil penelitian sebelumnya.

Gambar 3. Flow Chart Penelitian

Gambar 4. Teknik Analisa Data Pembuatan Aplikasi

Gambar 5. Teknik Analisa Data Pembuatan Aplikasi (Lanjutan)

III. HASIL DAN PEMBAHASAN Hasil Pembuatan Program Aplikasi

Hasil dari pembuatan program menggunakan perangkat lunak dari aplikasi VBA pada *Microsoft Excel* diberi nama "Optimasi Base Linier Program (OBLinP) Versi APS (Asep-Pengki-Supyan) v.01". Untuk tampilan dapat dilihat pada Gambar 6.

Akselerasi: Jurnal Ilmiah Teknik Sipil

Volume. 2, No. 2, Februari 2021 E-ISSN: 2715-7296

Gambar 6. Tampilan Beranda Program

Cara memasukkan data yaitu buka aplikasi OBLinP-APS v.01 kemudian pilih pada *tab ribbon* menu *input* data, selanjutnya isi datadata yang diperlukan untuk perhitungan kemudian keluar. Setelah itu pilih menu proses dan akan muncul *userform* proses lalu klik semua perintah yang ada secara berurutan dan setelah itu keluar dari *userform*.

Proses pertama ini akan menghasilkan grafik optimasi secara keseluruhan. Apabila hendak melihat grafik detail harus dilakukan proses kedua. Cara melakukan prose data untuk detail grafik yaitu:

- 1. Cari nilai terbesar pada *net benefit* di data grafik utama
- 2. Salin 41 data dengan nilai terbesar menjadi data paling tengah
- 3. Tempelkan pada data grafik detail 5 ha
- 4. Klik tombol "klik untuk melanjutkan" pada detail grafik 1 ha.
- 5. Setelah itu Klik tombol "klik untuk melanjutkan" pada detail grafik 0,2 ha dan akan muncul *userform* proses seperti pada perhitungan pertama, klik seperti pada perhitungan pertama sampai selesai.
- 6. Kemudian setelah proses tersebut selesai, tutup *userform* proses tersebut.
- 7. Untuk melihat grafik pilih menu *ribbon* lihat hasil kemudian pilih grafik di paling ujung kanan, lalu sesuaikan skalanya sesuai kebutuhan.
- 8. Selesai

Setelah dibuat program kemudian dicoba perhitungan dengan data pada awal tanam awal oktober-1, hasil yang bisa didapatkan dari perhitungan ini yaitu berupa grafik optimasi seperti terlihat pada Gambar 7 - Gambar 10. Dikarenakan data yang terlalu banyak pada perhitungan menggunakan program maka keluaran yang bisa dilihat yaitu grafik optimasinya.

Gambar 7. Hasil optimasi data utama untuk awal tanam okt-1, HE80%

Gambar 8. Hasil optimasi detail 5 ha untuk awal tanam okt-1, HE80%

Gambar 10. Hasil optimasi detail 0,2 ha untuk awal tanam okt-1, HE80%

Hasil Hitungan Manual

Proses perhitungan manual dilakukan dengan cara manual yaitu menghitung satu

persatu hasil yang diperlukan. Untuk pola perhitungannya sama seperti pada program. Hasil dari perhitungan manual ini terlihat seperti pada Tabel 4, namun pada perhitungan manual interval luasnya tidak sama seperti pada program, interval luas yang digunakan pada perhitungan manual yaitu per 50 ha dikarenakan terlalu banyak nya data yang perlu dihitung.

Tabel 4. Perhitungan Optimas	4. Perhitungan Optim	iasi
-------------------------------------	-----------------------------	------

Luas lhn	Benefit /thn	Benefit total	Q sedia	% Rga	Indeks	Gagal lahan	Net Benefit
(ha)	(juta Rp /ha)	(juta Rp)	(m3 /det)		Rga	(juta Rp)	(juta Rp)
1	2	3	8	9	10	11	12
777	16,92	13.148,47	8,11	22,29	1,00	5.041	8.107,71
750	16,92	12.691,58	8,11	20,75	0,93	3.904	8.788,05
700	16,92	11.845,47	8,11	17,23	0,77	2.546	9.299,77
650	16,92	10.999,37	8,11	12,96	0,58	1.736	9.263,49
600	16,92	10.153,26	8,11	8,01	0,36	961	9.192,21
550	16,92	9.307,16	8,11	3,02	0,14	322	8.985,02
500	16,92	8.461,05	8,11	0,00	0,00	-	8.461,05
450	16,92	7.614,95	8,11	0,00	0,00	-	7.614,95
400	16,92	6.768,84	8,11	0,00	0,00	-	6.768,84
350	16,92	5.922,74	8,11	0,00	0,00	-	5.922,74
300	16,92	5.076,63	8,11	0,00	0,00	-	5.076,63
250	16,92	4.230,53	8,11	0,00	0,00	-	4.230,53
200	16,92	3.384,42	8,11	0,00	0,00	-	3.384,42
150	16,92	2.538,32	8,11	0,00	0,00	-	2.538,32
100	16,92	1.692,21	8,11	0,00	0,00	-	1.692,21
50	16,92	846,11	8,11	0,00	0,00	-	846,11
1	16,92	16,92	8,11	0,00	0,00	-	16,92

Hasil dari perhitungan optimasi tersebut kemudian disajikan kembali dalam bentuk grafik seperti terlihat pada Gambar 11 dan Gambar 12.

Gambar 11. Grafik Hubungan Antara Luas Lahan, Faktor K Dan Resiko Gagal, Hasil optimasi untuk awal tanam Okt-1, HE80%

Gambar 12. Grafik Hubungan Luas Lahan Dan Net Benefit, Hasil optimasi untuk awal tanam Okt-1, HE80%

Pembahasan Hasil Luaran Aplikasi

Pembuatan program aplikasi menggunakan *Visual Basic For Application* untuk pengelolaan air irigasi berbasis linier sepenuhnya bisa dilakukan dan hasilnya pun sama persis seperti perhitungan manualnya, namun pada perhitungan menggunakan program aplikasi ini lebih detail, akurat, dan lebih memuat banyak data dalam waktu pengerjaan yang singkat.[5]

Namun pada penelitian yang telah dilakukan sebelumnya terdapat kekurangan yaitu pada tampilan programnya yang masih kurang sederhana serta masih menggunakan *tab ribbon Microsoft Excel Default*. Oleh karena itu pada program yang sekarang dibangun tampilan aplikasinya lebih mudah dipahami dan *tab ribbon* yang ada dibuat sesuai dengan kebutuhan.

Seperti yang telah direncanakan, luaran/output dari aplikasi ini yaiu grafik optimasi yang merupakan grafik hubungan luas lahan dan net benefit, serta grafik hubungan luas lahan, faktor k dan resigo gagal. Analisis tahap pertama simulasi luas lahan tanam untuk adalah mendapatkan luas tanam optimal dari curah hujan 80%. Simulasi didasarkan pada setiap jadwal tanam dalam setahun. Namun, tidak semua kondisi awal tanam menghasilkan optimasi. Hal dikarenakan pada awal tanam tertentu ini kebutuhan air masih tercukupi.

Analisis kebutuhan air, air tersedia (debit andalan), hujan efektif, luas lahan, dan jadwal tanam serta pola tanam digunakan sebagai masukan dalam model optimasi tahap pertama. Hasil masukan tersebut adalah untuk setiap alternatif luas lahan tanam diperoleh nilai faktor k rata-rata, QAI-pt, kecukupan (kelebihan) dan kekurangan air tiap periode, jumlah sukses dan gagal pemberian air serta resiko gagal dan reliabilitas.

Hasil analisis tersebut bersama dengan hasil analisis benefit digunakan sebagai masukan pada analisa optimasi luas lahan dengan batasan yang telah ditentukan, yaitu jadwal tanam, hujan efektif, Q tersedia total dan luas lahan potensial. Hasil dari masukan ini, untuk setiap alternatif luas lahan akan menghasilkan indeks Rga, gagal lahan dan net benefit.

Selanjutnya, sistem aplikasi optimasi yang dibangun sudah cukup dan dapat digunakan untuk mempercepat proses perhitungan optimasi lahan. Sistem yang dibangun sudah bisa menghasilkan grafik walaupun grafik tersebut akhirnya masih harus disesuaikan sendiri skalanya.

Dari segi hasil perhitungan yang dihasilkan tentu lebih detail dan rinci dan sesuai dengan kaidah hasil perhitungan manual. Artinya hasil luaran dari aplikasi sama dengan hasil perhitungan manualnya.

Bandingan Hasil Optimasi dengan Program dan Manual

Bandingan dari hasil proses perhitungan optimasi menggunakan program dan perhitungan optimasi dengan manual hasilnya adalah sama persis, artinya tidak ada perbedaan yang signifikan ataupun yang menjadi kekurangan dari proses perhitungan dari kedua proses tersebut. Hasil yang menjadi bandingan dari kedua proses ini yaitu hasil akhir optimasi yaitu net benefit atau keuntungan pada luas lahan yang sama serta grafik optimasi. Hasil bandingan dari kedua proses perhitungan ini bisa dilihat pada tabel 5.

Tabel 5.	Bandingan	Perhitungan	Program	dengan
		Manual		

		Ivian	uui	
	Luas	Program	Manual	Bandingan
No	Lahan	Net Benefit	Net Benefit	Net
110	(ha)	The Denem	The Denem	Benefit
	(iiu)	(juta Rp)	(juta Rp)	\(juta Rp)
1	1	16,92210	16,92210	0
2	50	846,10500	846,10500	0
3	100	1692,21000	1692,21000	0
4	150	2538,31500	2538,31500	0
5	200	3384,42000	3384,42000	0
6	250	4230,52500	4230,52500	0

	Luas	Program	Manual	Bandingan
No	Laban	Not Ronofit	Not Bonofit	Net
INU	(ha)	Net Delletit	Net Dellefit	Benefit
	(11a)	(juta Rp)	(juta Rp)	\(juta Rp)
7	300	5076,63000	5076,63000	0
8	350	5922,73500	5922,73500	0
9	400	6768,84000	6768,84000	0
10	450	7614,94500	7614,94500	0
11	500	8461,05000	8461,05000	0
12	550	8985,02409	8985,02409	0
13	600	9192,20667	9192,20667	0
14	650	9263,49369	9263,49369	0
15	690	9302,35300	-	-
16	700	9299,77106	9299,77106	0
17	750	8788,05334	8788,05334	0
18	777	8107,71489	8107,71489	0

Berdasarkan perhitungan dapat dilihat bahwa hasil yang didapat antara perhitungan program dan perhitungan manual sama. Namun pada pengoperasiannya perhitungan menggunakan program lebih detail dan akurat dibandingkan dengan hitungan manual, walaupun pada pembuatan dan penyesuaian grafik keduanya sama yaitu harus di sesuaikan manual oleh pengguna. Hasil perhitungan dengan program untuk awal tanam Oktober-1 optimasi dicapai pada luas tanam 690 ha dengan net benefit Rp. 9.302.353.000,- per tahun. Sedangkan hasil perhitungan dengan manual optimasi dicapai pada luas tanam 700 ha dengan net benefit 9.299.770.00,- per tahun. Terjadi perbedaan hasil antara program dengan manual, hal ini wajar karena untuk perhitungan program interval luas nya per 1 ha, sedangkan perhitungan manual interval luasnya per 50 ha. Tetapi untuk data-data yang lainnya pada posisi yang sama hasil perhitungannya sama. Hasil grafik bisa dilihat pada gambar 7, gambar 11 dan gambar 12.

IV. KESIMPULAN DAN SARAN Kesimpulan

Membangun aplikasi berbasis pemrograman untuk optimasi pengelolaan air irigasi dapat dilakukan secara sederhana dengan menggunakan VBA (Visual Basic for Application) Volume. 2, No. 2, Februari 2021 E-ISSN: 2715-7296

vang terdapat pada Microdoft Excel. Membangun aplikasi dilakukan dengan membuat beberapa form yang disesuaikan dengan kebutuhan yang diberi kode selaniutnva (coding). Untuk luaran/hasil sendiri lebih dihubungkan ke worksheet dalam Excel dengan tujuan supaya memuat banvak lebih dapat data hasil perhitungan.

Hasil perhitungan program aplikasi yang telah dibangun sama dengan hasil perhitungan manual, namun hasil perhitungan program aplikasi ini lebih akurat, detail dan rinci. Selain itu juga, proses perhitungan tidak menghabiskan banyak waktu seperti hal nya menghitung manual atau menghitung dalam *Excel* yang tidak menggunakan *VBA*.

Saran

Dalam penelitian penulis langsung menginput hasil hitungan KAI-L. Artinya sebagian perhitungan telah terlewati, tidak tersistem dalam aplikasi yang dibangun ini. Penelitian selanjutnya dapat dikembangkan lagi dengan membuat suatu sistem yang dapat menghitung langsung data curah hujan, data temperatur, dan data debit andalan atau data lainnya, sehingga sistem ini akan lebih mudah lagi dalam penggunaannya.

Penelitian ini juga masih belum bisa mengatasi otomatisasi grafik secara keseluruhan. Artinya, masih ada yang harus disesuaikan sendiri yaitu dalam mengatur skala resiko gagal yang nyatanya berubah-ubah. Penelitian selanjutnya dapat dikembangkan dengan mengotomatisasi grafik tersebut, sehingga aplikasi dapat lebih sempurna dan lebih mudah digunakan.

Untuk pengembangan aplikasi ini penulis menyarankan untuk menggunakan bahasa program lainnya seperti VB, C, C++, menghasilkan *software standalone*.

DAFTAR PUSTAKA

- [1] Setyono, Ernawan. "Studi Optimasi Pola Tanam Daerah Irigasi Gong Gang Kecamatan Parang Kabupaten Magetan". Media Teknik Sipil 14.1 (2016):51-59.
- [2] Hidayat, A. K., & Darmanto, I. H. (2001). Model optimasi pengelolaan air intake lakbok selatan bendung gerak Manganti (Doctoral dissertation, Universitas Gadjah Mada).
- [3] Ginting, Segel, Dadan Rahmandani, and Abid Hendri Indarta. "Optimasi Pemanfaatan Air

Embung Kasih untuk Domestik dan Irigasi Tetes." Jurnal Irigasi 13.1 (2019): 41-54

- [4] Divisi Penelitian dan Pengembangan MADCOMS. (2014). Microsoft Excel 2010. Pemrograman VBA. Yogyakarta: C.V Andi.
- [5] Setiawan, Nendra. 2020. Aplikasi Program Optimasi Pengelolaan Air Irigasi Dengan Visual Basic For Application (VBA) Berbasis Microsoft Excel (Studi Kasus Daerah Irigasi Bendung Cimulu). Tidak Diterbitkan. Fakultas Teknik. Universitas Siliwangi.