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Flood classification plays a crucial role in disaster mitigation, 

particularly in areas frequently affected by floods. This study proposes 

a novel model combining Convolutional Neural Networks (CNN) using 

ResNet-50 and Light Gradient Boosting Machine (LightGBM) for 

classifying flood and non-flood areas using Sentinel-1 SAR imagery. 

The dataset used consists of 21,016 images, evenly distributed between 

flood and non-flood classes, and processed through resizing, 

normalization, denoising, and augmentation. Feature extraction was 

conducted using the ResNet-50 architecture, which captured spatial and 

textural patterns efficiently, followed by LightGBM for classification. 

The proposed model achieved a high accuracy of 96%, with Precision, 

Recall, and F1-scores exceeding 95% for both classes. The evaluation 

metrics, including Precision-Recall Curve with an AUC of 0.9852 and 

a Confusion Matrix, confirmed the model's robustness and balance in 

classifying both categories. Additionally, comparisons with previous 

research, such as SAR-FloodNet, demonstrated the superiority of the 

proposed approach, achieving a 2% improvement in accuracy. Despite 

these results, limitations such as the exclusive use of Sentinel-1 data and 

the lack of validation across diverse environmental conditions remain. 

Future research should explore integrating multispectral Sentinel-2 data 

and testing on broader datasets to enhance scalability and reliability. 

The findings underscore the model's potential for real-world 

applications in flood monitoring and disaster management systems. 
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1. INTRODUCTION 

Floods are among the most destructive natural 

disasters, particularly in densely populated areas, low-

lying topographies, and regions with extreme rainfall. The 

impacts of this disaster include infrastructure damage, loss 

of housing, and even casualties [1]. Over recent decades, 

climate change has intensified flood risks through 

increased rainfall intensity and rising sea levels [2], [3]. 

Studies show that floods are the most frequent hydro-

meteorological hazards, causing global economic losses of 

approximately $10 billion annually. The United Nations 

University estimates that over half a billion people are 

affected by floods each year, and this figure could rise to 

two billion by 2050 due to ongoing climate change and 

rapid urbanization [4]. Hence, innovative approaches are 

required to improve flood classification and reduce its 

impacts, especially through the integration of remote 

sensing technologies and machine learning into early 

warning systems [4]. 

Remote sensing using satellite imagery has become a 

crucial tool in flood disaster monitoring and management. 

One of the most utilized data sources is Synthetic Aperture 

Radar (SAR) imagery from Sentinel-1 satellites, part of the 

Copernicus program by the European Space Agency 

(ESA). SAR is effective for flood monitoring, even in data-

scarce or cloud-covered regions [5], [6]. Its advantage lies 

in its ability to penetrate clouds and operate regardless of 

lighting conditions. Sentinel-1, operating in VV (Vertical-

Vertical) and VH (Vertical-Horizontal) polarization 

modes, provides high-resolution imagery (up to 5 m × 20 

m), making it suitable for large-scale flood mapping [7]. 

By combining satellite data and machine learning By 

combining SAR data with machine learning, we can 

develop faster, more accurate flood classification models 

http://innovatics.unsil.ac.id/
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to support government response and community resilience 

efforts [8]. 

Machine learning (ML) provides powerful methods to 

analyze large-scale datasets such as satellite imagery. Deep 

learning, a subset of ML, leverages Artificial Neural 

Networks (ANNs) to achieve high accuracy and solve 

complex problems by learning from data patterns. Prior 

studies have shown that deep learning significantly 

enhances satellite image classification tasks [9]. One of the 

most used algorithms in this field is the Convolutional 

Neural Network (CNN), which extracts essential features 

from grid-structured data like 2D images. CNNs are 

particularly effective in object classification, including 

flood detection using radar imagery [10].  

Nevertheless, challenges persist in handling high-

dimensional and imbalanced datasets. Ensemble learning 

offers an effective solution by combining predictions from 

multiple models to improve classification performance and 

reduce overfitting, bias, or variance [11], [12]. There are 

two main approaches in ensemble learning: bagging 

(bootstrap aggregating), which reduces variance by 

training models in parallel, and boosting, which improves 

prediction accuracy by sequentially correcting previous 

model errors [13]. Boosting techniques are highly popular 

due to their ability to iteratively improve accuracy, 

especially on complex data. One of the most efficient 

boosting implementations is Gradient Boosting, which 

builds decision trees iteratively to correct prior errors [14]. 

However, this method can be computationally expensive 

when applied to large datasets. To address this, Light 

Gradient Boosting Machine (LightGBM) was introduced 

to improve training speed and memory efficiency without 

sacrificing accuracy. 

LightGBM, a gradient boosting framework, introduces 

key optimizations such as Gradient-based One-Side 

Sampling (GOSS) and Exclusive Feature Bundling (EFB). 

GOSS prioritizes training on samples with large gradients, 

focusing on those contributing most to errors. EFB, 

meanwhile, reduces data dimensionality by grouping 

mutually exclusive features, helping maintain performance 

on high-dimensional data [14], [15]. These innovations 

make LightGBM suitable for handling class imbalance, 

overfitting, and high-dimensional features common 

challenges in satellite image classification tasks [16].  

The main objective of this study is to design and 

evaluate a robust computational model for classifying 

flood events using Sentinel-1 satellite radar imagery. This 

research integrates Convolutional Neural Network (CNN) 

for deep feature extraction and Light Gradient Boosting 

Machine (LightGBM) for classification, forming a hybrid 

approach tailored to the challenges of satellite image 

analysis. Specifically, the model aims to accurately 

distinguish between 'Flood' and 'Non-Flood' regions within 

high-resolution SAR imagery. This methodological 

combination is intended to overcome the limitations of 

earlier models such as SAR-FloodNet [17]. which, 

although effective, utilized a patch-based architecture that 

struggled to generalize across the diverse image samples 

found in datasets like SEN12-FLOOD. By leveraging 

CNN's capability to extract spatial features and 

LightGBM's efficiency in handling high-dimensional data 

and class imbalance, the proposed model seeks to achieve 

better performance, increased generalization ability, 

reduced training complexity, and improved classification 

stability across heterogeneous and large-scale datasets. 

This research presents several key contributions 

beyond previous studies. First, it introduces a hybrid 

classification model that combines CNN-ResNet50 for 

feature extraction with LightGBM for final classification. 

This approach is designed to improve efficiency and 

accuracy when handling large and diverse datasets, such as 

SEN12-FLOOD, compared to the patch-based method 

utilized in SAR-FloodNet [17], Second, the study applies a 

targeted data augmentation strategy to address class 

imbalance an aspect often overlooked in prior works. The 

proposed model achieved a classification accuracy of 96%, 

outperforming SAR-FloodNet’s 94% [17], thereby 

validating the effectiveness of this integrated method. 

Lastly, this study emphasizes the potential for 

incorporating multispectral data sources, such as Sentinel-

2, in future work, which could offer complementary 

information and enhance flood detection capabilities. 

2. RELATED WORK 

Sentinel-1, which utilizes Synthetic Aperture Radar 

(SAR) technology, has proven to be an effective data 

source for flood classification. Its ability to capture 

imagery under adverse weather conditions or darkness 

makes it particularly valuable. Several previous studies 

have demonstrated the effectiveness of Sentinel-1 in 

identifying flood-affected areas, especially in challenging 

weather using multi-temporal SAR data, with results 

showing high classification accuracy [18], [19] Moreover, 

this capability makes Sentinel-1 a strong foundation for 

developing robust flood classification models across 

various environmental conditions.  

Building upon this, recent research has explored the 

integration of machine learning with geospatial data 

analysis to model flood hazards. These studies emphasize 

the importance of combining SAR Sentinel-1 with other 

geospatial data sources to enhance flood prediction and 

risk assessment [20]. For example, a study in Punjab, 

Pakistan, demonstrated the effectiveness of integrating 

remote sensing data with machine learning models to 

produce accurate flood susceptibility maps, offering 

valuable insights for disaster management and mitigation 

planning [21]. Similarly, previous studies have also 

utilized Sentinel-1 imagery to monitor flood disasters in 

agricultural areas in Indonesia, further supporting its 

strength in identifying standing water [6]. Despite these 

advantages, SAR image processing presents technical 

challenges, particularly due to speckle noise, which can 

reduce classification accuracy if not addressed properly. 

To address such challenges in feature representation 

and classification accuracy, deep learning especially 

Convolutional Neural Networks (CNNs) has emerged as a 

powerful tool for satellite imagery analysis. CNNs are 

known for their capability in feature extraction and 

classification, particularly with complex spatial data such 

as SAR imagery. For instance, the SAR-FloodNet CNN 

model was developed to classify floods in Sentinel-1 SAR 

imagery and demonstrated high accuracy, although 

limitations remained in its ability to generalize across large 

and diverse datasets [17]. CNN-based models have also 

been successfully applied to multi-temporal imagery to 
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detect changes in surface conditions caused by flooding, 

leveraging CNN’s strength in capturing spatial patterns 

[19].  

However, despite its success, the CNN approach often 

encounters obstacles such as long training times and 

overfitting risks, particularly when working with limited 

datasets. Several studies have attempted to mitigate these 

challenges by employing deeper CNN architectures. While 

deeper networks can enhance feature representation, they 

may compromise computational efficiency and struggle 

with generalization on large-scale datasets [22]. To 

overcome the limitations of traditional CNNs, researchers 

have explored advanced architectures like ResNet-50. For 

example, prior studies modified ResNet-50 with a multi-

scale attention mechanism to improve recognition 

accuracy, illustrating the model’s strength in capturing 

more complex and abstract features. [23]. ResNet-50, with 

residual learning and a deeper architecture, has proven to 

outperform traditional CNN models in various 

classification tasks, However, this study did not combine 

ResNet-50 with ensemble learning methods such as 

LightGBM, which can improve classification efficiency 

and accuracy [23].  

Other studies have shown that ResNet-50, with its 

ability to handle deeper networks and reduce the vanishing 

gradient problem, achieves higher classification accuracy 

compared to traditional CNN models, especially when 

working with large and complex datasets [24]. The main 

advantage of ResNet-50 lies in its ability to handle more 

complex and deeper features, thus improving classification 

accuracy without increasing the risk of overfitting. 

Moreover, this model also demonstrates the ability to learn 

better representations on large datasets such as Sentinel-1 

SAR imagery, making it an ideal choice for flood 

classification tasks with high accuracy. However, these 

approaches typically demand high computational 

resources and rarely integrate ensemble learning methods 

that could further boost model efficiency and accuracy. 

In this context, ensemble learning techniques 

particularly LightGBM offer a promising solution. 

LightGBM, a gradient boosting framework, has proven its 

effectiveness in handling large and high-dimensional 

datasets, particularly those with imbalanced classes. For 

instance, a study in China utilized LightGBM for landslide 

hazard assessment, demonstrating both computational 

efficiency and strong performance on imbalanced data 

[25]. When combined with deep learning models like 

CNN, LightGBM can function as a classifier utilizing the 

extracted features, improving classification accuracy and 

training speed. However, such integration remains 

underexplored in flood classification tasks, despite its 

potential to enhance both model robustness and efficiency. 

This research proposes a novel hybrid approach that 

integrates CNN for feature extraction and LightGBM for 

classification. By combining the strengths of both methods, 

this approach aims to improve classification accuracy, 

mitigate overfitting, and address class imbalance—all 

while maintaining computational efficiency. This 

integration is particularly suited for large and diverse 

datasets such as SEN12-FLOOD. Unlike prior studies that 

relied solely on CNN or conventional patch-based 

methods, this study leverages a synergistic combination of 

deep learning and ensemble learning. Additionally, it 

addresses data imbalance through targeted augmentation 

techniques and explores the potential of multispectral data 

integration, offering a more comprehensive and adaptive 

framework for future flood detection and classification 

efforts. 

3. METHODOLOGY 

This methodology outlines the technical steps applied 

in this research to develop a flood classification model 

based on Sentinel-1 satellite imagery and machine learning 

algorithms, specifically Convolutional Neural Networks 

(CNN) and Light Gradient Boosting Machine 

(LightGBM). This research aims to improve flood 

classification accuracy using satellite data processed 

systematically through several critical stages. As 

illustrated in Figure 1, the research flow consists of five 

main stages: data collection, data preprocessing, feature 

extraction, model training, and model evaluation. 

 
FIGURE 1. RESEARCH METHODOLOGY 

3.1 Data Collection 

As shown in Figure 1, the first stage of this research is 

data collection. In this research, the data used for flood 

classification is radar imagery from Sentinel-1, part of the 

Copernicus European Space Agency (ESA) program, 

which provides Synthetic Aperture Radar (SAR) data for 

monitoring water-related events. SAR imagery is 

particularly useful under adverse weather conditions, such 

as heavy rain or thick clouds, which often obstruct optical 

observations. The dataset used is part of SEN12-FLOOD, 

which combines Sentinel-1 SAR and Sentinel-2 

multispectral data for analyzing flood events. However, 

this study focuses exclusively on Sentinel-1 data due to its 

capability to identify water inundation under challenging 

weather conditions. The Sentinel-1 imagery includes two 

polarization modes, VV (Vertical-Vertical) and VH 

(Vertical-Horizontal). VV polarization captures vertical 

reflections, while VH polarization identifies reflections 

from inclined surfaces. This complementary information 

enhances the accuracy of classifying flood and non-flood 

images. 

The spatial resolution of the data is 10 meters, 

providing sufficient detail for large-scale flood 

classification. Data collection involves downloading 

Sentinel-1 imagery from IEEE Data Port, ensuring 

alignment with the SEN12-FLOOD dataset. All data is pre-

labeled as "Flood" or "Non-Flood," simplifying the 

classification process and allowing the focus to remain on 

model performance optimization. 

3.2 Data Preprocessing 

Data preprocessing is a critical stage that prepares SAR 

imagery for input into machine learning models. It ensures 

consistency, improves image quality, and addresses 

challenges such as noise and class imbalance. The 
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preprocessing steps include image resizing, normalization, 

noise reduction, data augmentation, and dataset splitting. 

The overall data preprocessing workflow is illustrated in 

Figure 2, which outlines the key steps involved in 

preparing SAR imagery for model training. 

 

 
FIGURE 2. DATA PREPROCESSING FLOW 

3.2.1 Normalization and Image Resizing 

As shown in Figure 2, the preprocessing workflow 

begins with normalization and image resizing. Image 

loading is performed using the scrimmage library to read 

and process image files in TIFF format. After loading the 

images, the first step is resizing. The purpose of resizing is 

to ensure that all images have consistent dimensions, 

specifically 128 × 128 pixels. This step is essential 

because neural network models, such as CNNs, require 

inputs with uniform dimensions. 

The resizing process is conducted using the 

transform.resize() function, which adjusts image 

dimensions without significantly altering the aspect ratio 

or shape of the images. This process also employs 

interpolation techniques to maintain image quality. 

Mathematically, resizing using linear interpolation is 

explained as follows: 

𝐼′(𝑥′, 𝑦′) =  ∑ 𝐼 (𝑥, 𝑦)(𝑥,𝑦) .  kern(𝑥′ − 𝑥, 𝑦′ − 𝑦)  (1) 

In equation (1), 𝐼 (𝑥, 𝑦) represents the intensity of the 

original pixel, 𝐼′(𝑥′, 𝑦′) represents the intensity of the 

original pixel. 

Subsequently, the resized images are normalized. 

Normalization is performed by dividing pixel values by 

255.0, converting the pixel value range from [0, 255] to [0, 

1]. This normalization aims to reduce scale differences 

between images, accelerate model training, and improve 

model convergence.  

Mathematically, Min-Max normalization for grayscale 

images is performed using the following formula: 

𝐼𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝐼𝑅𝑎𝑤

255
  (2) 

In equation (2), 𝑰𝑹𝒂𝒘 represents the pixel value of the 

image before normalization, and 𝑰𝑵𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅  denotes the 

pixel value after normalization. 

This step helps reduce scale differences between 

images, accelerates model training, and improves model 

convergence. 

3.2.2 Denoising (Speckle Noise Reduction) 

As illustrated in Figure 2, one of the key preprocessing 

steps is noise reduction to enhance image quality before 

classification. Synthetic aperture radar (SAR) images often 

contain speckle noise, a multiplicative noise generated by 

the coherent nature of radar signals. This noise can obscure 

important information in the image and affect the accuracy 

of machine learning models. Therefore, denoising becomes 

a crucial step in data preprocessing to enhance image 

quality. 

In this research, denoising is performed using a median 

filter. The median filter was chosen because of its ability 

to reduce noise without compromising edges or essential 

features in the image. This filter works by replacing the 

value of each pixel with the median value of its neighbors 

within a defined window. 

If 𝐼(𝑥, 𝑦) is the pixel value at coordinates (𝑥, 𝑦) d in the 

original image, then the denoising process with a median 

filter produces a new pixel value 𝐼𝑑𝑒𝑛𝑜𝑖𝑠𝑒(𝑥, 𝑦) which is 

calculated as:  

𝐼𝑑𝑒𝑛𝑜𝑖𝑠𝑒(𝑥, 𝑦) = 𝑚𝑒𝑑𝑖𝑎𝑛{ 𝐼(𝑖, 𝑗): (𝑖, 𝑗) ∈ 𝑊(𝑥, 𝑦)}(3) 

In equation (3), 𝑊(𝑥, 𝑦) is the filter window that 

encompasses a square area around the pixel (𝑥, 𝑦), for 

example, with a size of 3 × 3. The median value of the 

pixels within this window is used to replace the original 

pixel value at that position. 

This process is effective for reducing speckle noise, as 

the median can ignore extreme values caused by noise 

without compromising edges or important patterns in the 

image. The denoising implementation was carried out 

using the scipy.ndimage library with a window size of 

3 × 3, ensuring that image quality is enhanced before 

being used for training machine learning models. 

3.2.3 Data Augmentation 

As shown in Figure 2, data augmentation is applied to 

enhance dataset diversity and improve model 

generalization. This process involves various 

transformations such as rotation, shifting, zooming, and 

horizontal flipping using the ImageDataGenerator library 

from Keras. Image augmentation is carried out using 

various random transformations such as rotation, shifting, 

and horizontal flipping using the ImageDataGenerator 

library from Keras. This process aims to enrich the variety 

of training images and reduce the risk of overfitting. 

Augmentation is performed by considering the class 

distribution between flood-affected images (Flood) and 

non-flood-affected images (non-flood). The augmentation 

factor is set higher for the Flood class since the number of 

images in this class is smaller than in the non-flood class. 

The first transformation applied is rotation, where the 

image is rotated randomly within the range of ±20°. 

Mathematically, this transformation is expressed as: 

𝐼𝑟𝑜𝑡(𝑥′, 𝑦′) = 𝐼(𝑥 cos 𝜃 − 𝑦 sin 𝜃 , 𝑥 sin 𝜃 + 𝑦 cos 𝜃) (4) 

In equation (4), 𝑥′ and 𝑦 are the initial coordinates, 

while 𝑥′ and 𝑦′ are the coordinates after rotation by a 

random angle 𝜃. 

Translation is performed by shifting the image position 

by up to 20% of the image width (𝑤) or height (ℎ). This 

transformation is expressed as: 

𝐼𝑡𝑟𝑎𝑛𝑠(𝑥′, 𝑦′) = 𝐼(𝑥 + ∆𝑥, 𝑦 + ∆𝑦)  (5) 

In equation (5), ∆𝑥 and ∆𝑦 are random translation 

values within the range [−0.2𝑤, 0.2𝑤] and [−0.2ℎ, 0.2ℎ], 
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respectively. Zoom transformation is applied by enlarging 

or reducing the image size by  ±20%  of its original size. 

Mathematically, this zoom transformation is expressed as: 

𝐼𝑧𝑜𝑜𝑚(𝑥′, 𝑦′) = 𝐼(𝑠𝑥, 𝑠𝑦)  (6) 
In equation (6), 𝑠 is a random scaling factor in the 

range[0.8,1.2], where 𝑠 > 1 enlarges the image, and 𝑠 < 1  

reduces the image size. 

Horizontal flipping is used to mirror the image along 

the horizontal axis, expressed as: 

𝐼𝑓𝑙𝑖𝑝(𝑥′, 𝑦′) = 𝐼(𝑤 − 𝑥, 𝑦)  (7) 
In equation (7), 𝑤 is the width of the image, and 

flipping is performed by reversing the pixel positions 

horizontally. 

In this study, the augmentation factor is set differently 

for each class. Images in the Flood class are augmented by 

a factor of 4, while the non-flood class is augmented by a 

factor of 2. Additionally, the original images are included 

in the augmented dataset to retain initial information while 

enriching the variation in the data. 

3.2.4 Dataset Splitting 

Following the steps outlined in Figure 2, the final stage 

of preprocessing is dataset splitting. After augmentation, 

the dataset is divided into two sets: a training set and a 

testing set. The split is performed with a ratio of 80% for 

training data and 20% for testing data. The split is done in 

a stratified manner, ensuring that the class distribution 

between Flood and Non-Flood images remains balanced in 

both sets. 

3.3 Feature Extraction 

In the feature extraction stage, processed Sentinel-1 

radar images are used to identify spatial and textural 

patterns using a Convolutional Neural Network (CNN) 

model. CNN is highly effective in detecting texture or 

surface property changes that are not easily observable, 

such as those caused by flooding. 

In this study, feature extraction is performed using a 

pre-trained ResNet50 model with local weights, modified 

specifically for feature extraction. The CNN architecture 

used is shown in Figure 3. 

 
FIGURE 3. CNN ARCHITECTURE 

The radar images are preprocessed by resizing them to 

224×224 pixels, which is compatible with the ResNet50 

model input size. Additionally, since this model is 

designed for three-channel (RGB) images, the grayscale 

Sentinel-1 images are converted to RGB format by 

replicating pixel intensity values across three channels. 

Feature extraction is conducted through convolutional 

layers to capture local patterns, followed by pooling layers 

to reduce dimensionality and emphasize the most 

significant features. This process is visualized in Figure 3, 

which illustrates the CNN architecture used, including 

convolution, pooling, and flatten layers that generate 

feature vectors. 

The extracted features are then used as input for the 

LightGBM classification model, which classifies images 

into flooded (Flood) and non-flooded (non-flood) 

categories. The extracted features are stored in CSV format 

along with their labels, allowing for further analysis 

without needing re-extraction. By leveraging ResNet50 for 

feature extraction, this study aims to improve flood 

classification accuracy using Sentinel-1 SAR imagery. 

 

 
FIGURE 4. EXTRACTION AND CLASSIFICATION FLOW 

The feature extraction and classification process in this 

study begins with training data processed through CNN to 

generate feature vectors, which are then used to train the 

LightGBM model. The trained model, with optimized 

weights, is then used to classify flooded and non-flooded 
areas on the test data. This process, from feature extraction 

to final classification, is illustrated in Figure 4. 

4. RESULT AND DISCUSSION 

The flood classification model developed in this study 

was trained using a dataset constructed and processed in 

accordance with the methodology described. The dataset, 

sourced from Sentinel-1 radar imagery, consisted of 21,016 

labeled images divided into two main classes: Flood and 

Non-Flood. This binary classification task relied on a 

relatively balanced dataset, with 10,904 Flood images and 

10,112 non-flood images. To ensure consistent input 

dimensions and reduce noise inherent in SAR images, 

preprocessing steps were applied including resizing, 

normalization, denoising, and data augmentation. These 

enhancements aimed to improve data quality and support 

more effective learning by the model. The dataset was then 

split into training and testing sets with an 80:20 ratio, 

resulting in 16,812 images for training and 4,204 for 

testing. 

The model architecture utilized a two-stage approach. 

In the first stage, feature extraction was performed using 

the CNN ResNet50 model, which is known for its deep 

layers and residual connections that allow efficient 
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learning of spatial and textural patterns from images. This 

process, applied to all 21,016 images, took approximately 

378.11 seconds. After extraction, the data was flattened to 

shapes of (16,812, 100352) for training and (4,204, 

100352) for testing, preparing it for the second stage. 

In the second stage, classification was carried out using 

the LightGBM algorithm. LightGBM was chosen for its 

high speed and efficiency in handling large-scale data and 

its capability to deal with class imbalance through built-in 

optimization techniques. By combining ResNet50's ability 

to extract rich visual features and LightGBM's fast and 

accurate classification, the model achieved optimal 

performance. 

The model's performance on the test data is 

summarized in Table 1, which presents detailed 

classification metrics. 

TABLE 1. METRICS EVALUATION 

 Precision Recall F1-Score Support 

Non-Flood 0.96 0.95 0.96 2023 

Flood 0.96 0.96 0.96 2181 

Accuracy   0.96 4204 

Macro avg 0.96 0.96 0.96 4204 

Weighted avg 0.96 0.96 0.96 4204 

 

These results demonstrate that the model effectively 

learned from both classes and was able to classify new, 

unseen test data with high confidence. The equal 

performance across Precision and Recall indicates that the 

model does not favor one class over the other, ensuring 

robust and unbiased predictions. This is particularly 

important in flood detection tasks, where both false 

negatives and false positives can have critical 

consequences in real-world emergency responses. 

The model’s discriminative ability was further 

evaluated using the Precision-Recall (PR) curve, as shown 

in Figure 5. The Area Under the Curve (AUC) value of 

0.9852 suggests that the model maintains a strong trade-off 

between Precision and Recall across all thresholds. 

 
FIGURE 5. PRECISION RECALL CURVE 

A high AUC score is essential in flood detection 

models, as it ensures the model can accurately distinguish 

between flooded and non-flooded regions. This also 

confirms the effectiveness of combining ResNet50 for 

feature extraction with LightGBM for classification. 

The classification performance can also be visualized 

using the confusion matrix presented in Figure 6, which 

highlights the correct and incorrect predictions for each 

class. 

 
FIGURE 6. CONFUSION MATRIX HEAT MAP 

Figure 6, the model correctly identified the majority of 

flood and non-flood samples, with minimal 

misclassification. This indicates strong learning capability 

and reliable generalization across various image 

characteristics, supporting the model's practical application 

in real-world satellite-based flood detection systems. 

These findings underscore the robustness of the model in 

distinguishing subtle differences in SAR imagery, even 

under complex environmental conditions.  

Furthermore, a detailed evaluation of classification 

accuracy per class is presented in Table 2, which further 

supports the reliability of the model. 

TABLE 2. CLASSIFICATION PERFORMANCE 

Class Accuracy Loss 

Non-Flood 0.96 0.04 

Flood 0.96 0.04 

 

The results in Table 2 indicate that the model 

consistently classifies both flood and non-flood classes 

with minimal error. The balanced classification 

performance is crucial for ensuring practical applicability 

in real-world flood detection scenarios. This high level of 

accuracy is essential for early warning systems, where 

timely and precise flood classification can save lives and 

reduce economic losses. 

Furthermore, the progression of accuracy and loss 

during model training can be observed in Figure 7 and 

Figure 8, showing a stable upward trend until the model 

reaches convergence. The loss graph shows a consistent 

decline, reflecting effective model learning. The gradual 

reduction in loss values during training demonstrates that 

the model successfully minimizes prediction errors over 

multiple iterations, making it more robust against unseen 

data. This consistent performance across training epochs 

indicates that the learning rate and chosen optimization 

algorithm were well-tuned, contributing to a reliable and 

generalizable model for practical deployment. 
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FIGURE 7. ACCURACY MODEL 

 
FIGURE 8. LOSS MODEL 

In Figure 7, the model accuracy graph shows a stable 

upward trend during the training process. The model 

achieved an accuracy of 0.9816 on the training data and 

0.9569 on the testing data. This consistent improvement in 

accuracy reflects the model's ability to effectively learn 

patterns from the training data. The high accuracy on the 

testing data also demonstrates the model's capability to 

generalize effectively, meaning it can perform well on 

unseen data. 

Meanwhile, in Figure 8, the model loss graph indicates 

a consistent reduction in error throughout the training 

process. The final loss value reached 0.0184 for the 

training data and 0.0440 for the testing data. This decline 

signifies the model's ability to gradually minimize 

prediction errors as training iterations increase. The small 

difference between the training loss and testing loss 

indicates no significant signs of overfitting, ensuring a 

balance between the model's learning capability on the 

training data and its generalization on the testing data. 

Overall, Figures 7 and 8 illustrate the model's optimal 

performance during training. The high accuracy and low 

loss indicate that the combined CNN-ResNet50 approach 

for feature extraction and LightGBM for classification can 

work effectively on the Sentinel-1 dataset used. With these 

results, the model not only demonstrates its ability to learn 

data patterns well but also shows high reliability when 

tested on new data. This is crucial to ensure that the model 

can be implemented in real-world applications, such as 

satellite radar image-based flood detection systems. 

This research also conducted a comparison with 

previous studies to evaluate the contributions and 

advantages of the developed model. As presented in Table 

3, the CNN-ResNet50 and LightGBM-based approach 

showed higher accuracy compared to several prior 

methods. 

 

TABLE 3. COMPARISON OF ACCURACY WITH PREVIOUS RESEARCH 

Research Method Accuracy (%) 

SAR-FloodNet  94% 

ResNet50-LightGBM (proposed method) 96% 

Based on Table 3 previous research utilizing a CNN 

with the SAR-FloodNet model achieved an accuracy of 

94%. In this study, the CNN ResNet50 model was 

employed for feature extraction, followed by LightGBM 

for final classification, achieving an improved accuracy of 

96% with a final classification time of 55.35 seconds. This 

increase in accuracy reflects the advantages of the 

combined CNN-ResNet50 method for feature extraction 

and LightGBM for classification. The difference in 

methodology provides added value to the use of ResNet50, 

which is deeper and capable of capturing spatial and 

textural features more effectively than standard CNNs. 

LightGBM also offers benefits in computational 

efficiency, enabling the model to process data more 

quickly and handle large datasets more effectively. 

However, several limitations need to be noted. This study 

relies solely on Sentinel-1 data, without considering 

integration with multispectral data from Sentinel-2, which 

could provide additional information relevant to flood 

detection. Furthermore, further validation in more diverse 

environmental conditions is required to ensure the model's 

reliability across various scenarios. 

Overall, this model holds significant potential for 

application in satellite radar image-based flood detection 

systems, particularly for classifying flooded and non-

flooded areas. Future research integrating multispectral 

data and testing the model in various environmental 

conditions could enhance its reliability and expand its 

applicability. 

5. CONCLUSIONS 

This research successfully developed a flood 

classification model based on the combination of CNN-

ResNet50 and LightGBM using Sentinel-1 radar imagery. 

The model demonstrated excellent performance with an 

accuracy of 96% and high Precision, Recall, and F1-score 

exceeding 95% for both classes (Flood and Non-Flood). 

Evaluation results indicate that the model maintains 

balanced performance across both classes, with good 

generalization capability on testing data. Additionally, the 

combination of CNN-ResNet50 for feature extraction and 

LightGBM for classification has proven to enhance 

computational efficiency while improving classification 

accuracy. The key advantage of this model lies in the 

effective integration of deep feature extraction through 

CNN-ResNet50 and efficient classification using 

LightGBM. CNN-ResNet50 can capture detailed spatial 

and textural features from SAR imagery, while LightGBM 

enhances classification efficiency, particularly in handling 

high-dimensional and imbalanced datasets. Compared to 

previous methods such as SAR-FloodNet, the proposed 

model improved classification accuracy by approximately 

2%, with a final classification time of 55.35 seconds, 

demonstrating both improved accuracy and reduced 

computational complexity. 

However, there are some limitations to consider, 

including the exclusive use of Sentinel-1 data without 
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integration of multispectral data and the need for further 

validation under diverse environmental conditions. Future 

studies could involve integrating Sentinel-2 data and 

testing the model across broader geographic regions to 

improve reliability and scalability. The application of 

transfer learning with more optimal parameterization can 

also be explored to improve accuracy without significantly 

increasing complexity. In addition, a hybrid approach 

combining radar and optical data has the potential to 

provide a more thorough flood analysis, including the 

detection of impacts to vegetation and infrastructure. With 

the results obtained, this model has great potential for 

implementation in flood detection systems based on 

satellite radar imagery. In addition to contributing to 

disaster risk mitigation, the model can be integrated into 

early warning systems to support fast and accurate 

decision-making in flood-prone areas. 
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