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Forest biomass estimation method using drone imagery and vegetation
index, focusing on the effectiveness and efficiency of the approach.
Using high-resolution drone imagery, this study analyzes vegetation
structure and density, and supports the development of a more accurate
biomass estimation model compared to traditional methods. Drone
imagery has the advantage of collecting data quickly and in real time,
especially in areas that are difficult to access manually. Vegetation
indices, such as NDVI, are used to assess vegetation health and density,
which are closely related to biomass estimation. The combination of
drone imagery and vegetation indices can produce more detailed data,
support 3D vegetation modeling, and help estimate biomass volume
over time. This study is expected to produce data and biomass
estimation models that support sustainable forest management as well
as technical recommendations for the use of drones for vegetation
monitoring. The findings of this study show that the proposed method
produces an estimation accuracy of 85.2% based on field validation data
calculated using simple linear regression. The findings of this study are
expected to make a significant contribution to the development of
drone-based technology for efficient and environmentally friendly

natural resource management.

1. INTRODUCTION

Forests are one of the most important ecosystems on
Earth because they function as carbon dioxide sinks,
habitats for various species, regulators of the hydrological
cycle, and protectors of soil fertility. Forests also offer
economic and ecological benefits, such as fuel, building
materials, and sources of biomass energy. A forest is a field
of trees that is a natural living association with its
environment that is determined by the government. Such
areas exist in many places around the world and function
as carbon dioxide sinks, animal habitats, regulators of
hydrological currents, and soil conservation. This is one of
the most important parts of the Earth's biosphere [1].

Forest biomass refers to the total amount of living
organic matter within a forest ecosystem, encompassing
trees, shrubs, and other vegetation components. The
utilization of forest biomass has been increasingly
recognized as an environmentally friendly approach to
supporting energy sustainability and reducing greenhouse
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gas emissions. Biomass, derived directly or indirectly from
plant materials, can be used for various purposes, including
fuel, construction materials, animal feed, and other
commercial products. As a renewable energy source,
biomass is considered sustainable because its carbon
emissions are largely offset by the carbon absorbed during
plant growth, thereby minimizing its contribution to net
atmospheric CO: levels.

Accurate estimation of forest biomass is therefore a
critical aspect of sustainable natural resource management,
particularly in the context of climate change mitigation and
carbon stock assessment. Conventional biomass estimation
methods rely primarily on direct field measurements, such
as tree diameter and height sampling, which are often time-
consuming, labor-intensive, costly, and difficult to
implement in remote or inaccessible forest areas. These
constraints limit the efficiency and spatial coverage of
traditional approaches and highlight the need for
alternative methods that can provide reliable biomass
estimates with greater efficiency.
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Recent advances in remote sensing technologies have
introduced drone-based imagery as a promising alternative
for forest biomass estimation. Unmanned aerial vehicles
(UAVs) are capable of acquiring high-resolution data in
near real time and can be deployed flexibly over areas that
are difficult to access through ground surveys. When
equipped with multispectral sensors, UAVs enable detailed
analysis of vegetation structure and canopy characteristics.
Vegetation indices, particularly the Normalized Difference
Vegetation Index (NDVI), are widely used to assess
vegetation health and density, which are closely related to
biomass distribution. Vegetation index values can
represent vegetation cover percentage, photosynthetic
activity, fraction of absorbed photosynthetically active
radiation (fAPAR), and carbon dioxide absorption
potential [2]. As spectral transformations applied to multi-
band imagery, vegetation indices are effective for
highlighting vegetation density parameters such as
biomass, chlorophyll concentration, and leaf area index
(LAD [3].

Most previous studies on biomass estimation have
predominantly relied on satellite imagery, which typically
provides moderate spatial resolution and may be
insufficient to capture fine-scale variability in
heterogeneous forest environments. Furthermore, while
the use of multiple vegetation indices has been shown to
improve estimation accuracy, the integration of high-
resolution UAV imagery with three-dimensional (3D)
vegetation modeling remains relatively limited. Additional
research is therefore needed to examine the extent to which
UAV-derived vegetation indices and 3D vegetation
structures can enhance biomass estimation accuracy
compared to conventional field-based methods, which are
constrained in their ability to represent spatial variability.

This study aims to evaluate the potential of combining
drone imagery and vegetation indices to produce more
accurate and efficient forest biomass estimates. The
primary objective is to develop a biomass estimation model
that supports sustainable forest management by improving
data quality and reducing operational costs relative to
traditional approaches. The results of this research are
expected to contribute to the development of drone-based
remote sensing technologies for environmentally
sustainable and efficient forest resource monitoring.

2. RELATED WORK

The development of unmanned aerial vehicle (UAV)
technology has provided a promising alternative for high-
resolution vegetation monitoring. UAVs offer flexible data
acquisition and superior spatial detail compared to satellite
platforms. Shofiyanti [11], [12] demonstrated the potential
of unmanned aircraft for detailed mapping and monitoring
of crops and agricultural land, highlighting their
applicability for vegetation observation. Subsequent
studies extended the use of UAV imagery to environmental
applications, including sustainable agricultural planning
based on drone-derived spatial information [10].

In addition to spectral information, UAV imagery
enables the extraction of spatial and textural features that
can support vegetation and land cover analysis. Deo
Hernando et al. [7] showed that color and texture features
derived from drone imagery can improve land use
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classification performance, suggesting their potential
relevance for vegetation characterization. Furthermore,
comparisons between UAV-based multispectral imagery
and satellite data have indicated that UAV-derived
vegetation indices, such as NDVI, can provide more
detailed and localized information, particularly in coastal
and mangrove ecosystems [13]. Vegetation indices remain
a central component in biomass-related studies due to their
ability to represent vegetation density and health. Early
theoretical foundations of digital image processing and
vegetation index transformation for remote sensing
applications were established by Danoedoro [16] and
further applied in vegetation density analysis [15]. These
indices have also been used to estimate carbon absorption
capacity in forested and mangrove areas, demonstrating
their relevance for carbon stock assessment [18].

Despite these advancements, several challenges remain
in forest biomass estimation. While advanced
computational techniques, including optimization and
intelligent algorithms, have been explored in various
environmental applications [14], many biomass estimation
studies still rely either on satellite imagery or on complex
models that require substantial data and computational
resources. Relatively fewer studies focus on the combined
use of high-resolution UAV imagery and vegetation
indices within simplified estimation frameworks that
balance accuracy, efficiency, and practical applicability.
This study addresses this gap by evaluating the use of
UAV-derived vegetation indices for forest biomass
estimation, with an emphasis on operational feasibility and
support for sustainable forest management.

3. METHODOLOGY

This study employs a drone-based remote sensing
approach combined with vegetation index analysis to
estimate forest biomass. High-resolution multispectral
drone imagery was acquired over the study area to capture
detailed spatial information on vegetation structure and
canopy conditions. The collected imagery was first
subjected to geometric and radiometric corrections to
ensure spatial accuracy and to minimize radiometric
distortions caused by sensor characteristics and
illumination conditions. Following the preprocessing
stage, vegetation indices were calculated from the
corrected imagery. The Normalized Difference Vegetation
Index (NDVI) and Enhanced Vegetation Index (EVI) were
used to represent vegetation health, density, and
photosynthetic activity, which are closely related to
biomass distribution. These indices were derived from
multispectral bands and analyzed to characterize spatial
variability in vegetation cover across the study area.

Forest biomass estimation was conducted by
integrating vegetation index values with a three-
dimensional (3D) vegetation model generated from drone
imagery. The 3D representation provides additional
structural information that supports biomass volume
estimation beyond two-dimensional spectral analysis. A
simple linear regression model was then developed to
relate vegetation index values to biomass measurements
obtained from field surveys.

Model validation was performed by comparing the
estimated biomass values with field-measured data
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collected at selected sample plots. This validation step was
used to assess the reliability of the proposed approach.
Furthermore, the performance of the drone-based biomass
estimation method was qualitatively compared with
conventional field-based approaches in terms of efficiency,
data coverage, and practical applicability. The overall
methodology is designed to support sustainable forest
management by providing a cost-effective and accurate
alternative for forest biomass monitoring.

FIGURE 1. DATA PROCESSING AND ANALYSIS WORKFLOW

3.1 Estimation Model and Formula

In this research, forest biomass estimation was
performed using a simple linear regression model that
relates vegetation index values to field-measured biomass
data. The Normalized Difference Vegetation Index
(NDVI) was selected as the independent variable due to its
strong relationship with vegetation density and canopy
condition. The regression model is expressed as follows:

Biomass =ax NDVI +Db ¢))

Where the coefficients a and b are determined based on
fitting to field validation data. Field biomass data were
collected from ten sampling points distributed across the
study area. At each sampling location, biomass
measurements were obtained through direct tree diameter
observations using a relascope, supported by standard field
measurement procedures. These field measurements
served as reference data for calibrating and validating the
regression model. The performance of the estimation
model was evaluated using the coefficient of determination
(R?). The resulting R? value of 0.852 indicates a strong
linear relationship between NDVI values derived from
drone imagery and the corresponding field-measured
biomass, suggesting that the proposed model is capable of
providing reliable biomass estimates at the study site.

3.2 Data Collection

The data used in this study consist of high-resolution
drone imagery and vegetation index values derived from
multispectral data. The primary dataset comprises
multispectral UAV images acquired over the study area,
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which provide detailed spatial information on vegetation
cover and canopy characteristics. From these images,
vegetation indices, including the Normalized Difference
Vegetation Index (NDVI) and Enhanced Vegetation Index
(EVI), were calculated to represent vegetation health and
density. In addition to spectral information, ancillary data
were collected to support the analysis. These data include
geographic coordinates of the study area and descriptive
environmental information related to site conditions. Such
metadata were used to ensure accurate spatial referencing
and to support the interpretation of vegetation patterns
observed in the drone imagery.

Field data were also collected as reference information
for model calibration and validation. These data were
obtained from selected sampling points and include
measurements related to vegetation structure, which were
used to link vegetation index values with actual biomass
conditions. All data collection activities were planned and
conducted to ensure consistency between remote sensing
data acquisition and field observations.

3.3 Data Processing

The steps taken include several main stages. The first
stage is data pre-processing, which is processing raw data
into a format that is ready to be analyzed by performing
geometric and radiometric corrections on drone images.

a. The purpose of geometric correction is to remove
spatial distortions in an image so that each pixel has
an accurate geographic position. Steps:

= Identify Distortion: Distortion can occur due to
camera perspective, drone movement, or
terrain effects.

* Processing: Use GPS and Inertial Measurement
Unit (IMU) data from the drone to calculate the
camera position and orientation when shooting.
Apply  algorithms such as  Affine
Transformation or Rubbersheet
Transformation to correct distortion.

= Geo-referencing: Matching imagery to
geographic coordinates using Ground Control
Points (GCPs) taken in the field. Software such
as ArcGIS, QGIS, or Agisoft Metashape are
often used.

= Tools that can be used: GIS software: ArcGIS,
QGIS. Photogrammetry: Pix4D, Agisoft
Metashape.

b. Radiometric correction aims to improve the visual
quality of an image by correcting pixel intensity
values due to variations in lighting, atmosphere, or
sensor sensitivity.

= Atmospheric Correction: Remove atmospheric
influences (haze, thin clouds) that can affect the
spectrum. Apply algorithms such as Dark
Object Subtraction (DOS) or other methods
such as FLAASH (Fast Line-of-sight
Atmospheric Analysis of Hypercubes).

= Sensor Correction: Calibrate the drone sensor
to reduce the effects of noise or non-linearity.
Apply normalization methods to equalize pixel
values between multiple images.

* Histogram Adjustment: Use Histogram
Equalization to increase image contrast. Apply
color or contrast correction to get uniform data.

Vira Hasna Fadilah
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* Tools That Can Be Used: Image Processing
Software: ENVI, ERDAS Imagine, MATLAB.
Python Libraries: OpenCV, scikit-image, or
rasterio.

Next step, vegetation index analysis is carried out by
calculating index values such as NDVI and EVI using
analysis software such as QGIS, ArcGIS, or Python. The
final stage is 3D vegetation modeling, which utilizes
image data to create three-dimensional vegetation
structures to support biomass volume estimation.

3.4 Data Validation

Model validation was conducted by comparing forest
biomass estimates derived from drone imagery and
vegetation indices with corresponding field measurement
data. Field observations, which served as reference data,
were used to evaluate the consistency between estimated
biomass values and actual biomass conditions at selected
sampling locations. The validation process aims to assess
the reliability of the proposed estimation model by
examining the degree of agreement between remotely
sensed estimates and ground-based measurements. This
step is essential to ensure that the developed model
provides credible biomass estimates and can be applied
confidently in subsequent analyses and forest monitoring
activities.

3.5 Analysis and Interpretation

The biomass estimation results were analyzed based
on vegetation cover and density parameters derived from
vegetation indices. Spatial variations in biomass
distribution were interpreted in relation to NDVI and EVI
values to examine patterns of vegetation condition across
the study area. This analysis provides insight into how
variations in vegetation density influence biomass
estimates obtained from drone imagery. Furthermore, the
efficiency and accuracy of the drone-based biomass
estimation approach were evaluated through comparison
with conventional field-based methods. The comparison
focused on aspects such as data acquisition time, spatial
coverage, and the level of detail obtained from each
approach. Through this comparative analysis, the strengths
and limitations of drone imagery and vegetation index-
based methods were identified, particularly in terms of
their applicability for practical and sustainable forest
monitoring.

4. RESULT AND DISCUSSION
4.1 3D Vegetation Model Analysis

Figure 2 illustrates the three-dimensional (3D)
vegetation model generated from high-resolution drone
imagery. The model provides a spatial representation of
vegetation structure, allowing variations in canopy height
and density to be visually identified across the study area.
Compared to conventional two-dimensional imagery, the
3D model offers additional structural information that
supports a more comprehensive interpretation of
vegetation conditions related to biomass distribution. The
spatial pattern observed in the 3D vegetation model
indicates heterogeneous vegetation structure, with denser

106 Vira Hasna Fadilah

canopy formations occurring in localized areas and more
open or sparse vegetation distributed elsewhere. These
structural variations suggest differences in biomass
accumulation, which are further examined through
vegetation index analysis. The presence of vertical
vegetation information from the 3D model complements
spectral-based indicators and enhances the interpretation of
biomass estimates, particularly in areas with complex
vegetation arrangements.

FIGURE 1. 3D VEGETATION MODEL

TABLE 1. NDVI TABLE BASED ON CLASSIFICATION INTERVALS

NDVI Class NDVI Range Vegetation Description
Water bodies or non-vegetated
Very Low <0.00 surfaces (e.g., buildings, bafe soil)
Low 0.00 - 0.20 Open land or areas with very
sparse vegetation cover.
Moderate 0.21-0.40 Shrubland or sparsely distributed
vegetation.
High 0.41 -0.60 Moderately dense vegetation such
as agricultural land or gardens
Very High 0.61 =1.00 Dense vegetation such as forested

areas or green wetlands

Table 1 presents the classification of NDVI values used
to characterize vegetation conditions in the study area.
NDVI values were grouped into five classes, ranging from
non-vegetated surfaces to areas with dense vegetation
cover. This classification serves as a basis for interpreting
vegetation density and its potential contribution to forest
biomass. NDVI values below 0.0 represent non-vegetated
surfaces such as water bodies, built-up areas, or exposed
soil, indicating negligible biomass potential. Low NDVI
values in the range of 0.00-0.20 correspond to open land
or areas with very sparse vegetation cover. These zones
contribute minimally to overall biomass due to limited
vegetation density.

Moderate NDVI values (0.21-0.40) are associated with
shrub-dominated areas or sparsely distributed vegetation,
reflecting transitional vegetation conditions. Higher NDVI
values between 0.41 and 0.60 indicate moderately dense
vegetation, such as agricultural land, gardens, or mixed
vegetation cover, which generally exhibit higher biomass
accumulation. The highest NDVI class (0.61-1.00)
represents areas with dense vegetation cover, typically
forested or wetland environments, where biomass potential
is expected to be highest. This classification provides a
structured framework for interpreting the spatial
distribution of vegetation observed in the NDVI map and
supports subsequent biomass estimation analysis. By
linking NDVI classes with vegetation characteristics, the
table facilitates the identification of priority areas for
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biomass assessment, forest conservation, and land
management planning.

TABLE 2. ESTIMATION OF NDVI PIXEL DISTRIBUTION TABLE BASED ON

MAP COLOR
NDVI Estimated Percentage Color
Range Pixel (%) Interpretation
<0.00 5% +5% I?ar_k red areas, very
limited vegetation
0.00-0.20 ~40% £40% Dominated by pale
yellow color
0.21-0.40 ~30% +309  Slight greenish
appearance
Bright green areas,
0.41-0.60 ~20% +20% sporadically
distributed
Dark green areas,
0.61-1.00 ~5% +5% very limited in

extent

Table 2 summarizes the estimated spatial distribution
of NDVI values based on visual interpretation of the NDVI
map. Areas with NDVI values below 0.0 are represented
by dark red tones and correspond to non-vegetated surfaces
such as water bodies, built-up land, or exposed soil,
indicating negligible biomass potential. These areas
occupy only a small proportion of the study area. Low
NDVI values ranging from 0.00 to 0.20 dominate the map,
accounting for approximately 40% of the total area. This
class is characterized by pale yellow colors and represents
open land or areas with very sparse vegetation cover.
Moderate NDVI values (0.21-0.40), shown by slightly
greenish tones, occupy about 30% of the area and are
typically associated with shrubland or sparsely distributed
vegetation.

Higher NDVI values between 0.41 and 0.60 account for
around 20% of the study area and are represented by
brighter green colors. These areas indicate moderately
dense vegetation, such as agricultural land or mixed
vegetation cover, which generally exhibit higher biomass
potential. Only a small fraction of the area (approximately
5%) shows very high NDVI values above 0.60, represented
by dark green colors, corresponding to dense vegetation
such as forested areas. The uneven distribution of NDVI
values suggests that vegetation cover within the study area
is spatially heterogeneous rather than uniformly
distributed. This spatial pattern highlights the importance
of high-resolution drone imagery for capturing detailed
variations in vegetation density, which are critical for
accurate forest biomass estimation and spatially explicit
land management analysis.

FIGURE 3. NDVI (NORMALIZED DIFFERENCE VEGETATION INDEX)
VISUALIZATION RESULTS IN COLOR MAP FORM

Figure 3 presents the spatial distribution of vegetation
based on the Normalized Difference Vegetation Index
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(NDVI), calculated under the assumption that the near-
infrared (NIR) band corresponds to Band 3. The NDVI
map is visualized using a color gradient ranging from red,
representing low NDVI values, to dark green, indicating
high NDVI values. This color variation reflects differences
in vegetation density and health across the study area.
Areas depicted in green tones correspond to high NDVI
values (generally above 0.40), indicating dense and healthy
vegetation such as forested areas, productive plantations,
or natural vegetation with active photosynthetic processes.
These areas exhibit high vegetation cover and,
consequently, a high potential for biomass accumulation.
In contrast, regions shown in yellow to orange colors, with
NDVI values between approximately 0.10 and 0.40,
represent moderate vegetation cover, including shrubs,
grasslands, or agricultural land with lower photosynthetic
activity, resulting in moderate to low biomass potential.
Areas colored red to dark red, characterized by NDVI
values below 0.10 or negative, indicate non-vegetated or
sparsely vegetated surfaces such as bare soil, built-up
areas, roads, or water bodies, where biomass potential is
minimal or absent.

The NDVI map reveals an uneven spatial distribution
of vegetation within the study area. Higher concentrations
of dense vegetation are observed mainly in the central to
lower parts of the explain the map, while the upper sections
are dominated by lower NDVI values, indicating sparser or
less healthy vegetation cover. This fragmented and patchy
vegetation pattern suggests spatial heterogeneity rather
than a uniform vegetation landscape, which directly
influences the overall biomass estimation results. In
addition, the presence of invalid NDVI values, indicated
by computational warnings during processing, reflects
pixels where the sum of NIR and red reflectance values
approaches zero. Such conditions commonly occur in non-
vegetated areas, including water surfaces or shadowed
regions. These pixels produce undefined NDVI values and
were therefore excluded or treated separately in subsequent
analyses to avoid bias in biomass estimation.

Based on the NDVI spatial patterns shown in Figure 3,
areas with high NDVI values can be identified as priority
locations for biomass estimation due to their higher
vegetation productivity and potential carbon storage.
Conversely, areas with low NDVI values may be
considered targets for land rehabilitation or vegetation
enhancement programs. When combined with field
measurement data and empirical regression models linking
NDVI values to biomass quantities (e.g., tons per hectare),
the NDVI map provides not only a visual representation of
vegetation health but also a robust basis for quantitative
biomass estimation and sustainable forest management
planning.

The results of this research have important
implications for sustainable forest management. The use of
drone imagery combined with vegetation indices enables
more efficient forest monitoring in terms of time, cost, and
spatial coverage. Compared to conventional field-based
approaches, UAV-based data acquisition allows periodic
updates of vegetation information without the need for
intensive and repetitive manual measurements.

From a practical perspective, the proposed approach
can support various forest management activities. High-
resolution drone imagery facilitates the monitoring of land
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cover changes over time, allowing early detection of
vegetation loss or recovery. Vegetation index analysis can
also be used to identify priority areas for conservation
based on vegetation density and biomass potential. In
addition, areas experiencing land degradation or reduced
vegetation cover can be identified more effectively,
supporting targeted rehabilitation efforts. Furthermore,
biomass estimation derived from drone imagery and
vegetation indices can serve as preliminary input for
carbon stock assessment, including applications related to
carbon accounting and the REDD+ scheme. By providing
timely and spatially detailed biomass information, this
approach contributes to more informed decision-making in
forest management and environmentally sustainable land-
use planning.

5. CONCLUSIONS

This research demonstrates that forest biomass
estimation can be performed reliably using drone imagery
combined with vegetation index analysis. Through
appropriate image preprocessing and vegetation index
extraction, a strong relationship between UAV-derived
NDVI values and field-measured biomass was observed,
confirming the effectiveness of remote sensing techniques
for biomass estimation in the study area. The results also
indicate that drone-based approaches offer clear
advantages over conventional field-based methods in terms
of operational efficiency and spatial coverage. High-
resolution UAV imagery enables detailed vegetation
mapping and supports more precise biomass estimation,
particularly in areas where access for ground surveys is
limited. Nevertheless, several factors may influence
estimation accuracy, including image resolution,
atmospheric conditions during data acquisition, and
variability in land cover types. Overall, the integration of
drone technology and vegetation index analysis provides a
practical framework for periodic forest monitoring with
reduced time and cost requirements. The biomass
estimation model developed in this study can serve as a
baseline for future improvements, including the
incorporation of additional field data and advanced
analytical techniques. Such developments may further
enhance the accuracy and applicability of UAV-based
biomass monitoring systems, contributing to more
effective and sustainable forest resource management.

Future research may consider the use of more advanced
multispectral or hyperspectral data to further improve the
accuracy of forest biomass estimation. Richer spectral
information is expected to enhance vegetation classification
and increase the reliability of vegetation index calculations.
In addition, model performance can be strengthened by
incorporating more diverse and representative field data for
validation. Direct biomass measurements obtained using
standardized field instruments may provide more robust
reference data for model calibration.
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