

INNOVATION IN RESEARCH OF INFORMATICS - VOL. 7 NO. 2 (2025) 96-102

 Published online on the journal’s web page : http://innovatics.unsil.ac.id 	
Innovation	in	Research	of	Informatics	(INNOVATICS)	

| ISSN (Online) 2656-8993 |

Page 96-102

Comparison of Efficiency and Security of AES, Blowfish, and ChaCha20
Cryptographic Algorithms on Image and Document Files
Muhammad Bagus Bintang Timur1, Royansyah2, Dewi Kusumaningsih3
1,2,3Master of Computer Science, Faculty of Information Technology, Universitas Budi Luhur, Jakarta, Indonesia

12411600154@student.budiluhur.ac.id, 222411600451@student.budiluhur.ac.id, 3dewi.kusumaningsih@budiluhur.ac.id.

ARTICLE INFORMATION ABSTRACT

Article History:
Received: June 9, 2025
Last Revision: October 10, 2025
Published Online: October 30, 2025

This research conducts a comparative evaluation of three prominent encryption
algorithms Advanced Encryption Standard (AES), Blowfish, and ChaCha20
focusing on their efficiency and cryptographic robustness when applied to
image and document data. With the rising demand for secure data storage and
transmission, identifying the most suitable algorithm for specific file types and
operational environments has become increasingly critical. In this research,
image (JPG, PNG) and document (PDF, DOCX) files were encrypted using
each algorithm. Performance was assessed in terms of encryption and
decryption speed, CPU and memory utilization, and the percentage of file size
variation post-encryption. Security analysis examined algorithmic resilience
against brute-force and differential cryptanalysis, as well as key length strength.
Experimental findings reveal that ChaCha20 achieved the highest efficiency in
processing time and resource consumption, making it suitable for low-power or
real-time applications. AES exhibited slightly lower speed but demonstrated
strong resistance to modern cryptanalytic attacks, confirming its reliability for
sensitive data protection. Blowfish, while computationally efficient, was
limited by its 64-bit block size, reducing its effectiveness for large datasets.
Overall, the results suggest that algorithm selection should be context-
dependent, balancing performance efficiency and security robustness. The
insights derived from this study can guide developers and system architects in
choosing appropriate encryption mechanisms for diverse digital security
scenarios.

KEYWORDS

Cryptography,
Advanced Encryption Standard,
Blowfish,
ChaCha20,
File Encryption

CORRESPONDENCE

Phone: 082358781250
E-mail: dewi.kusumaningsih@budiluhur.ac.id

1. INTRODUCTION

The exponential growth of digital communication and
data exchange has intensified the demand for robust and
efficient encryption mechanisms. Cryptography serves as
a fundamental approach to ensuring confidentiality,
integrity, and authenticity in modern information systems.
Among the numerous symmetric key algorithms, the
Advanced Encryption Standard (AES), Blowfish, and
ChaCha20 have emerged as prominent representatives of
different cryptographic generations and design
philosophies.

AES was standardized to overcome the inherent
weaknesses of the Data Encryption Standard (DES),
particularly its limited 56-bit key and vulnerability to
brute-force attacks. With its SubBytes, ShiftRows,
MixColumns, and AddRoundKey transformations, AES
achieves high levels of diffusion and confusion, making it
resistant to differential and linear cryptanalysis [1], [2].

Despite its computational reliability, AES’s block-based
architecture can lead to performance bottlenecks when
encrypting small or streaming data.

Blowfish, proposed by Bruce Schneier in 1993,
introduced a lightweight yet adaptable symmetric block
cipher with a variable key length of 32–448 bits [3], [4]. Its
unpatented nature and fast execution made it a preferred
option for embedded or resource-limited systems.
However, its 64-bit block size poses potential risks for
large-scale encryption, as it may expose data to birthday
attacks after processing significant data volumes [13], [15].

ChaCha20, on the other hand, represents a modern
evolution of symmetric cryptography through a stream
cipher architecture. Its design avoids block reuse issues
inherent in traditional block ciphers by generating a
pseudorandom keystream derived from a key, nonce, and
counter [8]. ChaCha20’s resistance to timing attacks,
combined with high throughput and low power

MUHAMMAD BAGUS BINTANG / INNOVATION IN RESEARCH OF INFORMATICS - VOL. 7 NO. 2 (2025) 96-102

Muhammad Bagus Bintang 97

consumption, makes it well-suited for real-time
applications and mobile environments [1], [5], [8].

Given these distinct design paradigms, this study
conducts a comparative evaluation of AES, Blowfish, and
ChaCha20 in the context of image and document
encryption. The analysis focuses on both performance
(encryption / decryption speed, CPU and memory
utilization, and file size variation) and security robustness.
The objective is to provide a practical guideline for
selecting the most appropriate encryption algorithm
according to file characteristics and computational
constraints.

2. RELATED WORK

In recent years, extensive research has investigated
symmetric encryption algorithms particularly AES,
Blowfish, and ChaCha20 across multiple domains and
performance dimensions. Muhammed et al. [1] proposed a
hybrid ChaCha20 ECDH scheme for cloud data security,
achieving low latency and strong resistance to brute-force
attacks. Prasad and Arul [2] compared RSA and Blowfish
in file-sharing applications, reporting that Blowfish
provides faster bulk-data processing but lacks built-in key
exchange capabilities. Sousi et al. [3] and Muttaqin &
Rahmadoni [4] confirmed AES’s continued dominance in
file encryption, emphasizing its strong diffusion properties
and hardware efficiency.

Further performance evaluations provide quantitative
insights into algorithmic efficiency. Dhaliwal [6]
demonstrated that AES outperforms DES in both
encryption speed and resilience to linear cryptanalysis,
while Buhari et al. [15] found that AES maintains superior
throughput for large files, with Blowfish remaining
competitive in smaller datasets. Alabdulrazzaq and
Alenezi [16] expanded the comparison to include Twofish
and Threefish, concluding that ChaCha20 and AES offer
the best trade-off between speed and security for real-time
encryption tasks.

Several domain-specific implementations highlight the
contextual strengths and weaknesses of each algorithm.
Sharma et al. [10] applied Blowfish to audio encryption
with minimal computational overhead, though its 64-bit
block structure poses risks of birthday attacks in high-
volume data. Gunawan & Rahmi [12] utilized Blowfish in
e-commerce applications, recommending AES for high-
assurance banking systems. Musadaq et al. [17] optimized
Blowfish for optical network image encryption under
bandwidth constraints. Dzahabi et al. [8], [9] emphasized
ChaCha20’s efficiency for low-power systems, while
Abasaheb and Mallapur [5] found that replacing Blowfish
with ChaCha20 could enhance throughput in blockchain-
based healthcare data exchange.

From a security standpoint, foundational cryptanalysis
works by Bauer [7] and Biryukov & De Cannière [14]
identify vulnerabilities tied to limited block sizes and linear
relationships within Feistel networks, reinforcing the need
for modern ARX-based designs like ChaCha20. Despite
extensive prior research, comparative studies evaluating
AES, Blowfish, and ChaCha20 simultaneously especially
across both image and document encryption remain
limited. This study fills that gap by assessing their

performance and robustness under consistent experimental
conditions.

3. METHODOLOGY

The research methodology illustrated through the
flowchart diagram shown in Figure 1 which illustrates the
research workflow, which comprises seven sequential
stages: literature review, data collection, algorithm
implementation, encryption decryption process,
performance evaluation, result analysis, and conclusion.

FIGURE 1. RESEARCH METHODOLOGY

3.1 Literature Review

Cryptography plays a crucial role in safeguarding
digital information against unauthorized access,
particularly when data is transmitted over public networks.
Its core objectives confidentiality, integrity, and
authenticityare achieved through mathematical
transformations of plaintext into ciphertext using
encryption algorithms and secret keys.

Among the most prominent symmetric algorithms are
the Advanced Encryption Standard (AES), Blowfish, and
ChaCha20. AES, standardized by NIST, is a block cipher
that operates on 128-bit data blocks with key lengths of
128, 192, or 256 bits. It offers strong resistance to
differential and linear cryptanalysis, making it a preferred
choice for securing sensitive government and commercial
data. Blowfish, designed by Bruce Schneier, is also a block
cipher with a flexible key length ranging from 32 to 448
bits. Although it is computationally efficient, its 64-bit
block size can lead to vulnerability under large-volume
data encryption due to potential block collisions.
ChaCha20, in contrast, is a modern stream cipher derived
from the Salsa20 family. It is optimized for high
throughput and exhibits excellent resistance to timing and
cache-based side-channel attacks, making it ideal for
mobile and embedded systems. Researchers generally
assess the performance of symmetric ciphers based on
encryption and decryption time, resource utilization, and
output ciphertext size, in addition to theoretical robustness
against cryptanalytic attacks. Comparative studies
consistently emphasize that no single algorithm achieves
universal superiority across all metrics.

Accordingly, this study focuses on a systematic
comparison of AES, Blowfish, and ChaCha20 under
uniform experimental conditions. The analysis aims to
reveal their relative efficiency and algorithmic resilience
when applied to image and document encryption, thereby
providing practical insights for security practitioners and
system architects.

Literature
Review Data Collection Implementation

Algorithm

Ecncyription and
Decryption

Process

Performance
Evaluation

MUHAMMAD BAGUS BINTANG TIMUR / INNOVATION IN RESEARCH OF INFORMATICS - VOL. 7 NO. 2 (2025) 96-102

 Muhammad Bagus Bintang 98

3.2 Data Collection

To evaluate and compare the performance of the AES,
Blowfish, and ChaCha20 algorithms, a representative
dataset of digital files was prepared. The dataset includes
various file formats commonly encountered in practical
computing environments such as images, documents, and
compressed archives to reflect both structured and
unstructured data. Each file type was chosen to represent
different data characteristics and storage requirements,
ensuring a balanced test environment. The dataset was
categorized into three size groups, as summarized in Table
1 to facilitate consistent performance measurement across
all algorithms.

TABLE 1. SAMPLE FILES USED IN THE EXPERIMENT
File Type Size

Logo-UBL JPG 20 kb
SKT PDF 382 kb

Journal Word 5.7 mb

Each algorithm was applied to the same files under

identical conditions to maintain experimental consistency.
No preprocessing or compression was performed prior to
encryption, ensuring that the evaluation reflected real-
world use cases. All experiments were executed on a
MacBook Air M1 (8 GB RAM, macOS Sequoia 15.5).
Each algorithm was implemented using the same
programming language and cryptographic library
framework to eliminate performance variations caused by
implementation differences.

3.3 Algorithm Implementation
To ensure a fair and systematic comparison, the three

encryption algorithms AES (Advanced Encryption
Standard), Blowfish, and ChaCha20 were implemented
using the same programming environment and
cryptographic libraries. Python was selected as the
implementation language due to its readability and the
availability of secure, well-maintained modules such as
PyCryptodome and Cryptography. Each algorithm was
configured with standardized parameters to maintain
balance and consistency, as shown in Table 2.

TABLE 2. ALGORITHM CONFIGURATION PARAMETERS

Algorithm Cipher
Type

Key
Size

Mode /
Nonce Library Used

AES Block
cipher 256-bit CBC mode

(with IV) PyCryptodome

Blowfish Block
cipher 128-bit CBC mode

(with IV) PyCryptodome

ChaCha20 Stream
cipher 256-bit 96-bit

nonce Cryptography

All encryption and decryption functions were
modularized to receive file inputs and return processed
outputs. The general implementation pipeline is
summarized below and illustrated in Figure 2.

FIGURE 2. ENCRYPTION–DECRYPTION PROCESS FLOW

a. Key and IV/Nonce Generation :
A secure random key and initialization vector (or nonce

for ChaCha20) were generated using cryptographically
secure pseudo-random functions to ensure
unpredictability.

b. Encryption Process:
Each file was encrypted using its respective algorithm,

and the output file was automatically renamed based on the
encryption scheme (Ex: filename.aes, filename.blowfish,
filename.chacha20).

TABLE 3. EXAMPLE OF ENCRYPTED FILE OUTPUTS
Source Output

Logo-UBL.jpg.aes Logo-UBL.jpg.aes.decryp
Logo-UBL.jpg.blowfish Logo-UBL.jpg.blowfish. decryp
Logo-
UBL.jpg.chacha20

Logo-UBL.jpg.chacha20. decryp

SKT.pdf.aes SKT.pdf.aes. decryp
SKT.pdf.blowfish SKT.pdf.blowfish. decryp
SKT.pdf.chacha20 SKT.pdf.chacha20. decryp
Journal.docx.aes Journal.docx.aes. decryp
Journal.docx.blowfish Journal.docx.blowfish. decryp
Journal.docx.chacha20 Journal.docx.chacha20. decryp

c. Time Measurement:
The encryption and decryption durations were

measured using Python’s time module with millisecond
precision. Results are summarized in Table 3.5.

TABLE 4. AVERAGE EXECUTION TIME

File Algorithms Encrypt
Time (ms)

Decrypt
Time (ms)

Logo-
UBL.jpg

AES 0.30 0.13
Blowfish 030 0.27
Chacha20 0.03 0.02

SKT.pdf
AES 0.53 0.08

Blowfish 4.91 4.24
Chacha20 0.19 0.20

Journal.docx
AES 15.22 2.16

Blowfish 66.26 63.55
Chacha20 3.39 3.24

d. Output File Size Logging:
To evaluate storage impact, file sizes were logged

before and after encryption. As shown in Table 3.6, the
encrypted output size remained nearly identical to the
original due to minimal padding overhead.

TABLE 5. FILE SIZE COMPARISON
File AES Blowfish Chacha20

Logo-UBL.jpg 20 KB 20 KB 20 KB
SKT.pdf 382 KB 382 KB 382 KB
Journal.docx 5.7 MB 5.7 MB 5.7 MB

To minimize bias, all tests were conducted under
identical conditions on the same hardware environment.
Error handling and exception management routines were
implemented to ensure reliable, repeatable execution and
accurate measurement.

3.4 Encryption-Decryption Process

The encryption and decryption experiments were
performed for all three algorithms AES, Blowfish, and
ChaCha20 using identical input datasets to ensure fairness
and consistency. Each file followed a standardized
pipeline, as illustrated in Figure 3.3.

MUHAMMAD BAGUS BINTANG / INNOVATION IN RESEARCH OF INFORMATICS - VOL. 7 NO. 2 (2025) 96-102

Muhammad Bagus Bintang 99

FIGURE 3. ENCRYPTION–DECRYPTION WORKFLOW

To maintain uniformity across tests, all processes were
automated and executed under identical cryptographic
parameters and hardware configurations. The step-by-step
procedure is described as follows:
a. Input Preparation

A representative dataset of image files (.jpg, .png) and
document files (.pdf, .docx) was used to simulate real-
world digital content. Files of varying sizes were selected
to evaluate algorithm scalability and performance
consistency across data types.
b. Encryption Phase

Each algorithm was applied using pre-defined
configurations (key size, mode, and nonce). The input file
was read in binary mode, encrypted using the respective
cipher, and written to a new output file. The encrypted
filenames were automatically generated based on the
algorithm used (filename.aes, filename.blowfish,
filename.chacha20).
c. Decryption Phase

The corresponding encrypted files were decrypted
using the same cryptographic keys and operational
parameters. The decrypted outputs were compared against
the original files to confirm that no data loss or corruption
occurred during the process.
d. Automation and Logging

All operations were executed through automated
Python scripts equipped with integrated timing and logging
functions. The scripts recorded encryption and decryption
durations, as well as file sizes before and after processing.
The results were compiled into structured data tables for
subsequent analysis.
e. Validation

To ensure decryption accuracy and data integrity,
SHA-256 hash verification was performed between the
original and decrypted files. Matching hash values
confirmed successful restoration of the original content.
This procedure was repeated for all test files and
algorithms, generating a complete and reliable dataset for
comparative performance analysis.
This process was repeated for all files and algorithms to
generate a complete dataset for comparative analysis in the
evaluation phase.

3.5 Performance Evaluation

To comprehensively assess the efficiency and security
of the AES, Blowfish, and ChaCha20 encryption
algorithms, a structured evaluation framework was
established. The analysis focused on three principal
performance dimensions: computational efficiency,
storage impact, and cryptographic robustness.

a. Execution Time
The total time required for both encryption and

decryption operations was recorded in milliseconds using
Python’s built-in timing utilities. This metric serves as a
direct indicator of each algorithm’s computational
efficiency and scalability when handling files of varying
sizes and formats. Shorter execution times suggest
suitability for real-time or resource-constrained
environments.
b. File Size Comparison

The sizes of the encrypted and decrypted files were
measured and compared with their respective original files
to identify any changes resulting from encryption
overhead. This parameter provides insight into the storage
and bandwidth implications of each encryption method—
an important factor in applications such as cloud storage,
IoT devices, and mobile systems where capacity
optimization is crucial.
c. Security Considerations

Beyond quantitative performance, a qualitative
security analysis was conducted based on cryptographic
strength, known vulnerabilities, and resilience to common
attacks such as brute-force, differential, and linear
cryptanalysis. Security characteristics and comparative
robustness indicators were compiled from authoritative
academic and technical sources to contextualize the
algorithms’ relative resistance under different threat
models. Each algorithm was executed using an identical
dataset and hardware environment to ensure experimental
fairness and reproducibility. The recorded data including
execution time, file size, and qualitative security attributes
served as the basis for comparative evaluation presented in
Result and Discussion. This structured approach enables a
balanced assessment of each algorithm’s practical
suitability, highlighting trade-offs between efficiency and
security for different data protection scenarios.

4. RESULT AND DISCUSSION

This chapter presents the experimental results and
analysis of three symmetric encryption algorithms: AES,
Blowfish, and ChaCha20. The focus of this evaluation lies
in comparing encryption and decryption performance
across three commonly used file types: image (.jpg),
document (.pdf), and Microsoft Word (.docx). The results
aim to highlight computational efficiency and performance
scalability under consistent testing conditions.

4.1 Test Results
The experiments were carried out by encrypting and

decrypting three selected files using each algorithm under
identical hardware and software environments. All tests
were automated to ensure measurement accuracy and
fairness across algorithms.

TABLE 6. FILE SIZE CONSISTENCY
File AES Blowfish Chacha20

Logo-UBL.jpg 20 KB 20 KB 20 KB
SKT.pdf 382 KB 382 KB 382 KB
Journal.docx 5.7 MB 5.7 MB 5.7 MB

All algorithms produced encrypted files of the same
size as their original counterparts, showing that none of the
encryption processes introduced measurable storage
overhead. This suggests that the three algorithms handle

Input File Encryption Encrypted
File

Decryption Decrypted
File

Validation
(SHA-256)

MUHAMMAD BAGUS BINTANG TIMUR / INNOVATION IN RESEARCH OF INFORMATICS - VOL. 7 NO. 2 (2025) 96-102

 Muhammad Bagus Bintang 100

file padding and block segmentation efficiently without
altering total file size significantly.

TABLE 7. ENCRYPTION AND DECRYPTION TIME

File Algorithms Encrypt
Time (ms)

Decrypt
Time (ms)

Logo-
UBL.jpg

AES 0.30 0.13
Blowfish 030 0.27
Chacha20 0.03 0.02

SKT.pdf
AES 0.53 0.08

Blowfish 4.91 4.24
Chacha20 0.19 0.20

Journal.docx
AES 15.22 2.16

Blowfish 66.26 63.55
Chacha20 3.39 3.24

From the data presented above, several key
observations can be drawn:
1. ChaCha20 consistently outperforms both AES and

Blowfish in terms of processing speed, achieving the
lowest encryption and decryption times across all file
types. This efficiency stems from its stream cipher
design, which avoids complex substitution–
permutation networks typical in block ciphers.

2. AES performs moderately well, maintaining stable
encryption times across small to medium-sized files.
Its performance degrades slightly for larger files due
to multiple block operations in CBC mode.

3. Blowfish shows the highest processing time,
particularly for large files (5.7 MB .docx), reflecting
its smaller block size (64-bit) and repeated key
scheduling overhead.

4. As file size increases, the time gap widens,
highlighting ChaCha20’s scalability advantage and its
suitability for real-time or resource-limited systems.

4.2 Visualization
To facilitate a clearer comparison of the performance

metrics, the experimental results were visualized using
graphical charts. These visualizations illustrate the relative
efficiency of AES, Blowfish, and ChaCha20 in terms of
encryption and decryption time across varying file sizes.

FIGURE 4. ENCRYPTION TIME COMPARISON

This chart presents the encryption time (in
milliseconds) required by each algorithm when processing
the three file types: .jpg, .pdf, and .docx. The visual
comparison reveals that ChaCha20 consistently
demonstrates the fastest encryption performance among
the tested algorithms. Its time efficiency remains superior
even as file size increases, emphasizing its capability for
high-speed encryption in both lightweight and heavy
workloads.

In contrast, Blowfish exhibits the slowest
performance, particularly with larger files such as the .docx
document. This can be attributed to its 64-bit block

structure and key expansion mechanism, which introduce
additional processing overhead. AES performs moderately
well, showing stable encryption times and predictable
scaling with file size, reflecting its optimized design for
both software and hardware environments.

FIGURE 5. DECRYPTION TIME COMPARISON

The second chart illustrates the decryption times for
the same set of files. As observed during encryption,
ChaCha20 again outperforms the other algorithms,
maintaining minimal decryption time even for large data
volumes. AES follows with relatively efficient decryption
times, while Blowfish shows the highest delay, mirroring
its encryption behavior. The results confirm that ChaCha20
offers a clear advantage in both encryption and decryption
operations. This efficiency can be crucial in real-time
applications such as secure data streaming, mobile
communication, or embedded systems where
computational resources are limited.

4.3 Discussion
4.3.1 ChaCha20: The Fastest Performer

ChaCha20 consistently demonstrates superior
performance in both encryption and decryption across all
file sizes. With encryption times as low as 0.03 ms for
small files and 3.39 ms for a 5.7 MB document, it proves
to be highly efficient. These results align with ChaCha20’s
reputation as a stream cipher optimized for high-speed
software execution. Unlike block ciphers such as AES and
Blowfish, ChaCha20 processes data in continuous
keystream blocks, avoiding padding and mode overhead.
Its add–rotate–xor (ARX) design also enhances
performance while maintaining strong resistance against
timing and differential attacks. Because it performs
efficiently without hardware acceleration, ChaCha20 is
ideal for mobile platforms, embedded systems, IoT
devices, and real-time cloud encryption where
computational resources are limited.

4.3.2 AES: Balanced and Reliable
AES remains the industry standard symmetric

cipher recommended by NIST, offering an excellent
balance of performance and cryptographic robustness.
Although its encryption time (15.22 ms for a 5.7 MB file)
is higher than ChaCha20, it remains competitive especially
in environments supporting AES-NI hardware
acceleration. AES employs a 128-bit block size and key
lengths of 128, 192, or 256 bits, providing strong resistance
against differential and linear cryptanalysis, brute-force,
and related-key attacks. Given its maturity, formal
validation, and widespread adoption, AES remains the
most reliable choice for enterprise, governmental, and
cloud-based applications requiring both performance and
long-term security assurance.

MUHAMMAD BAGUS BINTANG / INNOVATION IN RESEARCH OF INFORMATICS - VOL. 7 NO. 2 (2025) 96-102

Muhammad Bagus Bintang 101

4.3.3 Blowfish: High Overhead on Large Files
Blowfish, while historically important as one of the

earliest open-source ciphers, demonstrates significant
computational overhead in this evaluation. For large files
(5.7 MB), encryption and decryption times reach 66.26 ms
and 63.55 ms respectively. This reduced performance can
be attributed to its 64-bit block size, which limits
throughput and exposes it to birthday-bound vulnerabilities
in scenarios involving large data volumes. Although
Blowfish is still cryptographically secure in small-scale
contexts, its lack of hardware optimization and outdated
block size make it unsuitable for high-speed or large-scale
modern systems. Its successor, Twofish, addresses many
of these limitations, suggesting that newer alternatives
should be prioritized for modern use.

4.3.4 Impact of File Size
Across all algorithms, a clear correlation between

file size and processing time was observed. For smaller
files (20 KB), differences are negligible; however, as file
sizes increase (382 KB and 5.7 MB), performance
disparities become more pronounced. This scaling
behavior emphasizes that algorithm selection should
consider data volume and real-time processing
requirements. Stream ciphers like ChaCha20 excel at
handling large or continuous data streams.

4.3.5 Implications for Application
The comparative results highlight that algorithm

selection should be context-driven, balancing speed,
security, and implementation constraints.

TABLE 8. IMPLEMENTATION

Algorithm Strengths Limitations Suitable
Scenarios

ChaCha20 Extremely
fast, low
power use,
strong
resistance to
timing attacks

No built-in
authentication;
key reuse must
be avoided

Mobile
apps, IoT,
VPNs,
real-time
encryption

AES Proven
security,
hardware
acceleration
support,
balanced
performance

Slightly slower
without
hardware
support

Enterprise
systems,
secure
databases,
cloud
storage

Blowfish Simple
design, easy to
implement

Small 64-bit
block, slower
on large files

Legacy
systems,
small data

In summary, ChaCha20 provides the best performance
for time-sensitive environments, AES remains the most
robust and standardized option for general-purpose
security, and Blowfish is suitable mainly for backward
compatibility or lightweight non-critical tasks. These
insights can guide developers and system architects in
selecting the most appropriate algorithm based on
application requirements, security expectations, and
computational resources.

5. CONCLUSIONS

Based on experiments conducted on three
representative datasets a small image file (20 KB), a
medium-sized PDF document (382 KB), and a large

Microsoft Word file (5.7 MB) this research concludes that
ChaCha20 consistently achieves the fastest encryption and
decryption performance across all tested file sizes, with its
advantage becoming more pronounced as data size
increases, confirming its suitability for performance-
critical and resource-constrained environments such as
mobile, cloud, and IoT systems. AES demonstrates stable
and competitive performance on all datasets, providing a
strong balance between efficiency and cryptographic
assurance, which reinforces its continued suitability for
enterprise and government applications that prioritize
standardization and long-term security. In contrast,
Blowfish shows noticeably higher processing overhead
when encrypting and decrypting the 5.7 MB document,
indicating limited scalability and reduced practicality for
modern large-data workloads. Overall, these results
demonstrate that while all three algorithms function
correctly across varying data sizes, ChaCha20 is optimal
for high-performance software-based encryption, AES
remains the most reliable and standardized choice, and
Blowfish is best confined to legacy use cases.

REFERENCES
[1] R. K. Muhammed, Z. N. Rashid, and S. J. Saydah, “A

Hybrid Approach to Cloud Data Security Using ChaCha20
and ECDH for Secure Encryption and Key Exchange,”
KJAR, vol. 10, no. 1, pp. 66–82, Mar. 2025, doi:
10.24017/science.2025.1.5.

[2] V. B. Prasad and U. Arul, “Accuracy analysis for secured
file sharing by comparing RSA with blowfish,” presented
at the INTERNATIONAL CONFERENCE ON
APPLICATION OF ARTIFICIAL INTELLIGENCE FOR
RENEWABLE ENERGY SOURCES AND
ENVIRONMENTAL SUSTAINABILITY, Ariyalur,
India, 2025, p. 020104. doi: 10.1063/5.0258720.

[3] A.-L. Sousi, D. Yehya, and M. Joudi, “AES Encryption:
Study & Evaluation”.

[4] K. Muttaqin and J. Rahmadoni, “Analysis And Design of
File Security System AES (Advanced Encryption Standard)
Cryptography Based,” jaets, vol. 1, no. 2, pp. 113–123,
May 2020, doi: 10.37385/jaets.v1i2.78.

[5] J. P. Abasaheb and S. V. Mallapur, “Blockchain‐Integrated
Secure Healthcare Information Sharing via Advanced
Blowfish Encryption Standard With Optimal Key
Generation,” Trans Emerging Tel Tech, vol. 36, no. 3, p.
e70077, Mar. 2025, doi: 10.1002/ett.70077.

[6] G. Dhaliwal, “Comparative analysis of DES and AES
implementations in CyberSecurity applications,” Jan. 05,
2025, Preprints. doi:
10.36227/techrxiv.173611698.82877210/v1.

[7] F. L. Bauer, “Cryptanalysis,” in Encyclopedia of
Cryptography, Security and Privacy, S. Jajodia, P.
Samarati, and M. Yung, Eds., Cham: Springer Nature
Switzerland, 2025, pp. 468–471. doi: 10.1007/978-3-030-
71522-9_164.

[8] Z. Y. Dzahabi, N. Hayaty, and M. Bettiza,
“CRYPTOGRAPHY OF CHACHA20 and RSA
ALGORITHMS for TEXT SECURITY,” CNAHPC, vol. 7,
no. 1, pp. 290–301, Feb. 2025, doi:
10.47709/cnahpc.v7i1.5345.

[9] S. Sharma, K. N. Patel, and A. Siddhath Jha, “Cryptography
Using Blowfish Algorithm,” in 2021 3rd International
Conference on Advances in Computing, Communication
Control and Networking (ICAC3N), Greater Noida, India:
IEEE, Dec. 2021, pp. 1375–1377. doi:
10.1109/ICAC3N53548.2021.9725661.

MUHAMMAD BAGUS BINTANG TIMUR / INNOVATION IN RESEARCH OF INFORMATICS - VOL. 7 NO. 2 (2025) 96-102

 Muhammad Bagus Bintang 102

[10] J. Ayad, N. Qaddoori, and H. Maytham, “Enhanced Audio
Encryption Scheme: Integrating Blowfish, HMAC-
SHA256, and MD5 for Secure Communication,”
Mesopotamian Journal of CyberSecurity, vol. 5, no. 1, pp.
178–186, Feb. 2025, doi: 10.58496/MJCS/2025/012.

[11] K. V. Saravanan and G. S. Priya, “Hybrid blowfish
cryptography with elliptic curve Diffie-Hellman key
exchange protocol for enhancing data security and
performance,” Discov Electron, vol. 2, no. 1, p. 29, May
2025, doi: 10.1007/s44291-025-00071-0.

[12] R. Gunawan and E. Rahmi, “Implementasi Algoritma
Blowfish Untuk Pengamanan Data Transaksi Dalam
Aplikasi Berbasis Website E-commerce,” tc, vol. 24, no. 2,
pp. 427–438, May 2025, doi: 10.62411/tc.v24i2.12472.

[13] A. Biryukov and C. De Cannière, “Linear Cryptanalysis for
Block Ciphers,” in Encyclopedia of Cryptography, Security
and Privacy, S. Jajodia, P. Samarati, and M. Yung, Eds.,
Cham: Springer Nature Switzerland, 2025, pp. 1422–1426.
doi: 10.1007/978-3-030-71522-9_589.

[14] B. A. Buhari et al., “Performance and Security Analysis of
Symmetric Data Encryption Algorithms: AES, 3DES and
Blowfish,” IJANA, vol. 16, no. 04, pp. 6473–6486, 2025,
doi: 10.35444/IJANA.2025.16404.

[15] H. Alabdulrazzaq and M. N. Alenezi, “Performance
Evaluation of Cryptographic Algorithms: DES, 3DES,
Blowfish, Twofish, and Threefish,” Int. j. commun. netw.
inf. secur., vol. 14, no. 1, Apr. 2022, doi:
10.17762/ijcnis.v14i1.5262.

[16] R. Musadaq, S. N. Abdulwahid, N. N. Abd Alwahed, and
E. N. Abdulla, “Security analysis of an image encryption
algorithm based on Blowfish in GPON,” Journal of Optical
Communications, May 2025, doi: 10.1515/joc-2025-0109.

AUTHORS

Muhammad Bagus Bintang Timur
He is currently a second-semester student
in the Master of Computer Science
program at Universitas Budi Luhur. His
academic interests include computer
vision and image processing, especially in
the field of corrosion detection on metal

materials. He is actively involved in research projects
related to practical applications of digital image
processing.

Royansyah
He is currently a second-semester student
in the Master of Computer Science
program at Universitas Budi Luhur. His
academic interests focus on computer
networking and cybersecurity. He is
actively involved in research related to

network infrastructure and system optimization as part of
his graduate studies.

Dewi Kusumaningsih
She is a lecture of Information Technology
Faculty at Budi Luhur University. The
fields currently being studied are computer
security, cryptography, machine learning,
data science, image processing.

