

INNOVATION IN RESEARCH OF INFORMATICS - VOL. 5 NO. 1 (2023) 36-43

 Published online on the journal’s web page : http://innovatics.unsil.ac.id

Innovation in Research of Informatics (INNOVATICS)
| ISSN (Online) 2656-8993 |

Page 36-43

Performance Comparison of Response Time Native, Mobile and Progressive Web

Application Technology

Rachma Verina Rochim1, Alam Rahmatulloh2, R Reza El Akbar3, Randi Rizal4

1,2,3,4Department of Informatics, Siliwangi University, Jl. Siliwangi No. 24 Kota Tasikmalaya 46115, Indonesia

1 rachmaverina@gmail.com, 2alam@unsil.ac.id, 3reza@unsil.ac.id, 4randirizal@unsil.ac.id

ARTICLE INFORMATION ABSTRACT

Article History:

Received: May 15, 2023

Last Revision: May 21, 2023

Published Online: May 23, 2023

The development of technology in web-based applications is growing,

this creates new problems. The web technology that is currently being

discussed is Progressive Web Application (PWA) but is the PWA's

performance better than the previous technology. This research is about

measuring the performance of the Native Web, Mobile Web and PWA

using three testing tools, namely GTMetrix, Lighthouse, and Chrome

DevTool. The results of this study show how to measure the

performance of a Progressive Web Application (PWA), where PWA

can beat the performance of Native Web and Mobile Web if a web page

is tested more than once. Test results on the Progressive Web

Application (PWA), the minimum number of page files (home) is 217

kB with page loading time of 638 ms, while the medium page (about)

is 431 kB with page loading time of 646 ms, and when accessing heavy

pages (news) with a size of 41700 kB the page load time is 532 ms.

KEYWORDS

Chrome DevTool,

GTMetrix,

Lighthouse,

Mobile Web,

Progressive Web App

CORRESPONDENCE

Phone: 085321122010
E-mail: rachma@gmail.com

1. INTRODUCTION

A website is a page that is static or dynamic which

contains information in the form of a collection of text,

images, videos and even animations. In accessing the

website, an internet network is needed which is opened

through an explorer or commonly called a web browser [1].

Both static and dynamic are characteristics of the Native

Web. Native Web is an ordinary web where files are

written as plain text files, which are arranged and

combined in such a way with HTML or XHTML-based

instructions, which are sometimes also included with

various scripting languages. This web file will later be

translated by the browser engine and displayed as a page /

website that we normally see [2].

Website creation technology develops continuously not

only static or dynamic, but websites that are responsive

with a better web appearance that is adjusted to the screen

size of a device. In 2016 almost 60% of searches were

carried out via mobile devices [3]. The mobile web is one

of the best choices because the mobile web is a web with

performance and features that don't make it difficult to

access a web, it's just that the mobile web must be accessed

via an internet network and cannot be accessed if there is

no internet network available.

The need for technology that can overcome the lack of

internet network availability. The Minister of

Communication and Informatics stated that Indonesia is

still lacking in terms of internet network connection, the 3T

(Forefront, Outermost, and Disadvantaged) areas where

most of them are not connected to the internet network are

in the eastern part of Indonesia [4].

Progressive Web App (PWA) is an idea first endorsed

by Google engineer Alex Russell in June 2015 [5].

Progressive Web App (PWA) is a term for web-based

applications that use the latest web technologies, PWAs are

actually just regular web-based applications but take

advantage of modern browsing features to appear as if they

were native applications [6]. PWA not only allows cross-

platform development across websites, but also provides

features such as background synchronization, offline

support, home screen installation [7] for various devices.

The technological concept brought by PWA and allows it

to be together, namely Service Worker, AppShell, and Web

http://innovatics.unsil.ac.id/
mailto:rachma@gmail.com

RACHMA VERINA ROCHIM / INNOVATION IN RESEARCH OF INFORMATICS - VOL. 5 NO. 1 (2023) 36-43

37 Rachma Verina Rochim

App Manifest [8]. The Service Worker itself is utilized in

managing cache on the website.

This statement is the motivation to investigate how to

compare and measure the performance of Progressive Web

App, Native Web as well as Mobile Web in terms of the

speed parameters of accessing web pages, the number of

page files used and other optimizations using open-source

tools GTMetrix, Lighthouse and Chrome DevTools.

2. RELATED WORK

In the news portal application, PhoneGap technology is

implemented but it is often left behind when there are new

features, the need for modern technology that can optimize

the use of news portal applications [9].

Modern Progressive Web App technology is compared

to Native Web performance and the research results show

that PWA is superior in terms of performance compared to

Native Web using GTMetrix tools [10]. However, the

comparison of the web used is a different web and even an

existing web [2].

The modern technology of the Progressive Web App is

also compared to the Mobile Web to provide an assumption

that the larger the file size of the web page, the better the

performance of the progressive web app compared to the

mobile web. However, it is not known to what extent a web

page file affects the performance of progressive web apps

[4]. In the application of the Progressive Web App that is

inserted the service worker can cache the data, but this

research caching only 500 JSON data [6].

Progressive Web App testing using response time

parameters has been carried out only on hardware devices,

namely cameras and geolocation [11].

The research conducted [12] tested PWA performance

twice using Lighthouse Tools, but only tested on

performance, there were no recommendations to improve

performance.

3. METHODOLOGY

The research method consists of six stages which can

be seen in Figure 1.

Figure 1. Methodology

3.1 System Requirement

Analysis of system requirements is a stage in preparing

all needs in research, obtaining data is the most needed

thing. Data collection is carried out by utilizing the API

from newsapi.org, based on the data obtained, there is a

needs analysis process in accordance with the data.

Analyzing software and hardware requirements is also

needed in research, as well as identifying problems that can

describe the core problems of research.

Hardware and software requirements in making this

simulation application can be seen in Table 1 and Table 2.

Table 1. Hardware Requirement

No. Component Spesification

1. Processor A8-6410 4 Cores 2.0 GHz

2. Memory RAM 4 GB

3. VGA VGA 2 GB

Table 2. Software Requirement

No. Component Spesification

1. Sistem Operasi Windows 10 64 bit

2. Web Server Apache

3. Database MariaDB

4. Programming PHP 7.3.0 and Javascript

5. Web Browser Google Chrome

6. Text Editor Visual Studio Code

7. Tools Testing GTMetrix., Lighthouse dan

Chrome DevTools.

3.2 Design Apps Simulation

Simulation Application Design on the Native Web,

namely the selection of software modeling, application

interface design, and implementation. The stages of

designing a simulation application on the Mobile Web are

the same as on the Native Web, namely the selection of

software modeling, application interface design, and

implementation.

While the design of the simulation application on the

Progressive Web App includes how to form the PWA page

framework interface based on the AppShell guidelines,

create a manifest.json file to allow users to install

simulation applications, and register service workers so

that applications can run offline.

3.3 Testing

Figure numbers and titles are written in the center

alignment of the column. Figure numbers are written

according to the sequence using Arabic numerals. The title

of the image is written at the bottom of the image (effect

font: small caps), except for conjunctions and prepositions.

The title of the image uses a font size of 8 (eight). Images

may not exceed the margin limit of each column, unless the

size of a large image is not sufficient in 1 column, it can

traverse 2 columns.

Simulation application testing uses 3 tools, namely

GTMetrix, Lighthouse Tools, and Chrome DevTools.

Stages of testing using GTMetrix are carried out to

measure the performance of each simulation application

compared to the parameters Page Speed, YSlow, Fully

Loaded Time, Total Page Site and number of Requests.

Testing using Lighthouse aims to audit performance

comparisons in each simulation application with

parameters Performance, Accessibility, Best Practices,

SEO, PWA and recommendations for improving

performance in PWA simulation applications.

Stages of testing are carried out using Chrome

DevTool, namely, to test the file size of a page which can

affect the performance of the Progressive Web App with

the number of page file sizes in stages or periodically, by

utilizing the Network Panel which will be tested from the

parameters request, transferred, resource, finish,

DOMContentLoaded, Load.

RACHMA VERINA ROCHIM / INNOVATION IN RESEARCH OF INFORMATICS - VOL. 5 NO. 1 (2023) 36-43

 Rachma Verina Rochim

3.4 Result and Analysis

At this stage it shows the results of testing the

performance measurements of each compared simulation

application.

4. RESULT AND DISCUSSION

Data collection was obtained from news data on

newsapi.org as many as 539 data in the form of JSON, the

newsapi.org API Key is needed in this data collection.

Then the data is decoded or converted into an array and

entered a database that has previously tidied up its

attributes. The 539-news data came from 5 news

categories, namely "corona", "covid", "wfh", "Indonesia",

and "informatics". The news data is applied to each

simulation application which will later be used to measure

performance or see the performance of each application

being tested.

4.1 Design Apps Simulation

Figure 2 is the FlowChart of the News Portal

simulation application, there are 2 terminal symbols

indicating "Start" and "Finish". The first process is that the

user accesses the simulation application, the first page

displayed is the homepage. The homepage display uses the

offline connector symbol because there are two processes

that can be selected, namely the News menu and the About

menu.

Figure 2. Flowchart Apps Simulation

In the News process, load the news content and

display the process for View News Page. This news

content is called from the Data News database. While the

About process displays an about page which contains

information about the simulation application maker.

Figure 3. Use Case Apps Simulation

Figure 3 is a simulation application use case where the

actor is marked with a user (admin) and a non-admin user.

The user (admin) performs the process of creating news

content, viewing news content, editing news content, and

deleting news content. Meanwhile, ordinary users or users

can only view news content.

Figure 4. Desktop Interface Menu News on Native Web

Figure 4 is the display interface of the News menu on

the Native Web which contains news content in the form

of images and text. The design of a Native Web simulation

application describes the design of a simple Native Web

simulation application that is displayed when opened on a

desktop or via a mobile device. However, when a native

web application is accessed via a mobile device, the

display will not be neat or will not fit the screen size of the

mobile device because the native web design is not

responsive.

The simulation application interface on the mobile web

is not much different from the Native Web application, it's

just that the layout or appearance of each page will be in

the middle when accessing via a desktop because the

display design is specifically for mobile devices and is

designed responsively.

RACHMA VERINA ROCHIM / INNOVATION IN RESEARCH OF INFORMATICS - VOL. 5 NO. 1 (2023) 36-43

39 Rachma Verina Rochim

Figure 5. Desktop Interface Menu News on Mobile Web

Figure 5 is the display of the mobile interface from the

Home, About, and News menus on the Native Web which

contains news content in the form of images and text.

A. Application Model based on App Shell Architecture

The design of the PWA simulation application is built

based on the AppShell architecture, where the AppShell

architecture is an important component in the main display

of the PWA application, namely the user interface display

which contains HTML, CSS, and JavaScript scripts that

aim to make this PWA application reliable. AppShell is

divided into two parts, namely page outline and page

content.

The page framework section of this PWA simulation

application is divided into a minimal page (homepage),

medium page (about), and heavy page (news page).

Figure 6. News Page

Figure 6 shows the display of the heavy page, namely

the News page which contains 539 news data. Meanwhile,

the page content consists of text blocks and image blocks.

B. Create manifest.Json

Before creating the manifest.json file, an image for the

simulation application icon has been prepared, which is a

minimum size of 512 x 512 pixels. Manifest.json contains

brief information or data such as icon, application name,

appearance, application display orientation, etc. to set the

appearance, add applications to A2HS, set the color of the

splash screen and the color on the taskbar. The properties

in the manifest.json used in this PWA simulation

application are “name”, “short_name”, “theme_color”,

“background_color”, “display”, “standalone”,

“orientation”, “scope”, “start_url”, "icons", more details

can be seen in Table 3.

Tabel 3. Fungsi dari properti manifest.json
No. The Property Use Function

1. name Naming when requesting to

install the application.

2. short_name Naming on the home screen.

3. theme_color Color settings on the

application tool bar.

4. background_color For splash screen use.

5. display To select the display type of

the application.

6. orientation Defines the application view

position.

7. scope Defines the navigation scope

of the application.

8. start_ur To tell the browser where the

location of the application

starts running when run by the

user.

C. Service Worker

Service worker is a file that contains javascript code

that runs in the background or behind the scenes. The

service worker is an important component of the PWA

simulation application that allows the application to run

offline, the service worker also manages network requests

and plays with caching because the service worker acts as

an intermediary between the user and the website server

that will be accessed. To allow the application to be

accessed offline, the service worker must be registered first

so that it can fetch or news content data from the

newsapi.org website whose data has been entered into the
application database.

The response mechanism of the PWA application

service worker is cache first, network first, then generic

fallback, meaning that if a website page is accessed for the

first time, the website will be cached first and if it fails, it

will return to the network. If it fails to present data or a

request from an application that is not in the cache and

network, it will be handled by displaying a generic fallback

informing that the page failed to load or is not available as

shown in Figure 7. The generic fallback mechanism can be

seen in Figure 8.

RACHMA VERINA ROCHIM / INNOVATION IN RESEARCH OF INFORMATICS - VOL. 5 NO. 1 (2023) 36-43

 Rachma Verina Rochim

Figure 7. Generic Fallback

Figure 8. Generic Fallback Mechanism

4.2 Testing

Response time measurement testing was carried out

using 3 tools, namely GTMetrix, Lighthouse and Chrome

DevTools, the device used was a laptop with specifications

that met software and hardware requirements. The network

speed when testing is 14.77 Mbps.

a. GTMetrix

Testing using GTMetrix aims to measure the

performance of each simulation application based on the

parameters available on the GTMetrix site, namely Page

Speed, YSlow, Fully Loaded Time, Total Page Site and

Number of Requests.

Figure 9. Flowchart GTMetrix Testing

Figure 9 is the stages of testing using GTMetrix.

GTMetrix provides assessment results in grades and

numerical scores, grades in grades are symbolized by the

letters A, B, C, D, E, and F while the scores are marked

with numbers. Testing is carried out by entering the url

address of each simulation application, Figure 9 shows a

comparison of testing a simulated application using

GTMetrix.

Figure 10. Comparison Testing Using GTMetrix

Table 4. Score Testing Using GTMetrix

Simulation

Apps

Page

Speed
YSlow

Fully

Loaded

Time

Total

Page

Size

Req

uest

s

Native Web A (99%) A (98%) 1.4 s 35.1 kb 4

Mobile Web A (99%) A (98%) 1.6 s 35.2 kb 4

PWA A (99%) A (97%) 2.1 s 40.5 kb 6

Table 4 shows that the performance of each page of

the three simulation applications is in grade A where the

Page Speed score for each application is 99%, the YSlow

score on Mobile Web and Native Web is 98% while PWA

gets a score of 97%. Likewise with the YSlow score, on the

parameters Fully Loaded Time, Total Page Size and

number of Requests, the PWA simulation application still

loses to Mobile Web and Native Web, which takes 2.3s

with a total page size of 40.5 kb and a total of 6 requests.

This happens because in PWA there are several

additional processes that are carried out and not carried out

on the Mobile Web as well as the Native Web, such as

PWA having to register a Service Worker, then storing the

Application Shell in cache, there are additional page

requests in accessing manifest files and icon files, as well

other processes. Even so, there is no significant difference

between PWA and Mobile Web and Native Web, it's just

that the network access speed is sometimes unstable during

the testing process.

b. Lighthouse Tool

The Lighthouse Tool is used to audit the performance

of a web including PWA, the lighthouse tool provides

parameters that have been set on the official Google

Developer website, namely Performance, Accessibility,

Best Practices, SEO, and the implementation of the PWA

itself with a score rating from 0-100. Table 5 shows the

scoring category for the lighthouse, if a web after being

tested gets a score of 0-49, then the web is said to be slow,

and the score is red. If you get a score of 50-89, then the

web is standard or average like the web in general and the

score is orange. If the web gets a score of 90-100, then the

status of the web is fast or very good and the score will be

green. The stages in the Lighthouse test can be seen in

Figure 11.
Tabel 5. Category Assessment Score on Lighthouse

Skor Status Warna Skor

0 - 49 Lambat Merah

50 - 89 Rata-rata Jingga

90 - 100 Cepat Hijau

Figure 11. Flowchart Lighthouse Testing

RACHMA VERINA ROCHIM / INNOVATION IN RESEARCH OF INFORMATICS - VOL. 5 NO. 1 (2023) 36-43

41 Rachma Verina Rochim

Testing the simulation application using Lighthouse

can be seen in Figure 12-14. Figure 11 is a test on the

Native Web simulation application, Figure 12 tests on the

Mobile Web and Figure 13 tests on PWA.

Figure 12. Score Lighthouse Aplication Native Web

Figure 13. Score Lighthouse Aplication Mobile Web

Figure 14. Score Lighthouse Aplication PWA

Table 6. Score Testing Using Lighthouse

Simulati

on Apps

Perfor-

mance

Accessi

bility

Best

Practice
SEO PWA

Native

Web

89 81 100 90 Tidak

ada

Mobile

Web

91 100 100 90 Tidak

ada

PWA 90 89 100 90 Ada

Table 6 shows testing using Lighthouse on the three

simulation applications, the Mobile Web is superior to

PWA and Native Web. Because the PWA simulation

application detects PWA in the Lighthouse tool, there is a

separate assessment along with recommendations. PWA

assessment criteria are divided into 3, namely fast and

reliable as shown in Table 7, installable in Table 8, and

PWA Optimized in Table 9.

Table 7. Criteria Fast and Reliable

No. Condition Information

1 The web should load pages fast enough
on mobile networks

Fulfilled

2 The final web page should respond with

code 200 when offline

Fulfilled

3 start_url responds with code 200 when

offline

Fulfilled

Table 8. Criteria Installable

No. Condition Information

1 Must use HTTPS Fulfilled

2 Register the service worker that controls

the page and start_url
Fulfilled

3 The created web app manifest meets

PWA requirements

Fulfilled

Tabel 9. Criteria PWA Optimized

No. Condition Information

1 Redirect http traffic to https Fulfilled

2 Configure for a custom splash screen Fulfilled

3 Sets the theme color for the address bar Not Fulfilled

4 Creates the right content size for the

viewport

Fulfilled

5 Has a tag with width or initial-scale Fulfilled

6 Load some content when Javascript is not
available

Fulfilled

7 Provides a valid apple-touch-icon Not Fulfilled

8 Manifest implements a maskable icon Not Fulfilled

The recommendations suggested by the Lighthouse

Tool for criteria that are not met in points 3,7 and 8 of the

PWA Optimized criteria are:

- Added browser address bar theme color to match the

website.

- For ideal view on iOS when user add PWA app to

home screen, specify valid apple-touch-icon. The

important point is that the icon size is at least 192px

and not transparent.

- Having a maskable icon ensures that the image/icon

can fill the available space when installing the

application on the device.

c. Chrome DevTools

The Chrome DevTools test aims to test the number of

file pages that can affect the performance of simulated

applications, especially in PWA. This test scenario is

carried out on three multilevel home pages, about, and

news which will be tested on one of the Chrome DevTools

features, namely the Network Panel feature. The test

scenario can be seen in Figure 15.

Figure 15. Flowchart Chrome DevTools

The Network Panel is available when you right-click

on a website then select inspect and select Network. This

feature displays details on the file name, status received by

http, file format, file size, time to access the page, and the

waterfall web page file that has been displayed. However,

this test compares the parameters contained in the Network

taskbar which is the result of loading a page.

Table 10. Native Web Testing (P1) and (P2)

RACHMA VERINA ROCHIM / INNOVATION IN RESEARCH OF INFORMATICS - VOL. 5 NO. 1 (2023) 36-43

 Rachma Verina Rochim

Table 11. Mobile Web Testing (P1) and (P2)

Table 10 and Table 11 show the results of testing the

Mobile Web and Native Web simulation applications, the

difference between each page when tested 2 times is not

very significant and the difference is only small. For the

resource parameter there is no change at all for the mobile

web or native web because when loading the data page it

will always be called over the network.

Table 12. PWA Testing (P1) and (P2)

Table 12 shows the results of testing the PWA

simulation application, the test was carried out 2 times to

see the difference when accessing the page the second

time. A significant difference can be seen from the data

resource, which requires 77,000 kB of data the first time it

is accessed, and when the page is accessed again, only

41,700 kB of data is needed. This happens because the first

time the page is loaded the cache data will be stored in the

service worker, therefore when accessing the page for the

second time the data will be called from the service worker

and not through the network. That's when PWAs can be

accessed while the network is offline.

Figure 16. Diagram Parameter Resource on News

Figure 16 shows that on heavy pages with 2 tests,

PWA resources (kB) will decrease and the data is stored

in the service worker.

Figure 17. Grafik Parameter Finish Resource on News

Figure 17 shows that on a heavy page with 2 tests,

the PWA finish time parameter (ms) is reduced and it is

faster than the two applications because at the time of

testing the two data were taken from the service worker.

4.3 Results and Analysis

GTMetrix testing the performance of the PWA

simulation application is still inferior to the performance of

the other two simulation applications, even though the

difference is small. In the Lighthouse Tools test, the PWA

simulation application has implemented the requirements

of the PWA criteria. Among them are using https, there is

an add to home screen (A2HS) and can be accessed when

offline. As shown in Figure 18, Figure 19, and Figure 20.

Figure 18. Add A2HS Portal News

Figure 19. View A2HS Portal News

RACHMA VERINA ROCHIM / INNOVATION IN RESEARCH OF INFORMATICS - VOL. 5 NO. 1 (2023) 36-43

43 Rachma Verina Rochim

Figure 20. View Network Offline / Airplane Mode

The advantages and disadvantages of the simulation

application are:

a. Native Web: Pros of Native Web: Low difficulty level

when using the application. Disadvantages of Native

Web: The network must always be online, the display

is not responsive.

b. Mobile Web: Strengths of Mobile Web: Responsive

Design, can operate on cross platforms. Disadvantages

of Mobile Web: Network connection must always be

online.

c. PWA Simulstion Application: Can be used offline,

responsive design, special icon when Add to Home

Screen (A2HS), data caching management with service

workers, fast performance when accessed more than

once.

d. Disadvantages of PWA: Slow performance when

accessing the page for the first time.

The application of modern technology using the

Progressive Web App is very suitable for applications that

are frequently accessed by users, for example social media

applications, transactional buying and selling applications

/ e-commerce, etc.

5. CONCLUSIONS

Based on the research that has been done, measurement

of response time performance on Progressive Web

Applications compared to Mobile Web and Native Web,

seen from the number of times the page is accessed and

adjusts to the amount of cache data as well as network

availability used during testing. Web page file size affects

the performance of Progressive Web Applications, as

evidenced by testing the number of nested pages. However,

it proves to have an effect here when accessing the page

more than once.

In the second test, the minimum number of page files

(home) is 217 kB with a page load time of 638 ms, while

the average page (about) is 431 kB with a page load time

of 646 ms, and when accessing the page weight (news)

with size 41700 kB page load time is 532 ms. Even though

the average page (about) experiences an increase in time

when heavy pages are accessed the page loads faster than

the minimum page (home) and medium page (about). The

development of technology applications in making a

website, especially PWA, can continue to be carried out by

adding other features to be able to compete and be

compared with other technologies. In testing the News

page, additional data can be added to see the accuracy of

the effect of PWA performance, and the existence of tests

based on page / pagination.

REFERENCES

[1] J. P. Dias and H. S. Ferreira, “Automating the Extraction

of Static Content and Dynamic Behaviour from e-

Commerce Websites,” Procedia Comput Sci, vol. 109,

pp. 297–304, 2017, doi: 10.1016/j.procs.2017.05.355.
[2] K. Syaifudin, W. Nafisah, and R. Dian, “Analisis

Usability pada Perbandingan Web-Native dengan Web

Berbasis Progressive Web App.”

[3] S. Sophonhiranrak, “Features, barriers, and influencing

factors of mobile learning in higher education: A

systematic review,” Heliyon, vol. 7, no. 4, p. e06696,

Apr. 2021, doi: 10.1016/j.heliyon.2021.e06696.

[4] M. R. Ridho, A. Pinandito, and R. K. Dewi,

“Perbandingan Performa Progressive Web Apps dan

Mobile Web Terkait Waktu Respon, Penggunaan

Memori dan Penggunaan Media Penyimpanan,” 2018.

[Online]. Available: http://j-ptiik.ub.ac.id

[5] V. Karpagam, “Performance Enhancement Of Webpage

Using Progressive Web App Features,” 2017. [Online].

Available: www.ijirae.com

[6] A. Kurniawan, I. S. Areni, and A. Achmad,

“Implementasi Progressive Web Application pada

Sistem Monitoring Keluhan Sampah Kota Makassar,”

Jurnal Penelitian Enjiniring, vol. 21, no. 2, pp. 34–38,

Jan. 2018, doi: 10.25042/jpe.112017.05.

[7] V. Sharma, R. Verma, V. Pathak, M. Paliwal, and P.

Jain, “Progressive Web App (PWA) - One Stop Solution

for All Application Development Across All Platforms,”

International Journal of Scientific Research in

Computer Science, Engineering and Information

Technology, pp. 1120–1122, Apr. 2019, doi:

10.32628/CSEIT1952290.

[8] N. Nurwanto, “Penerapan Progressive Web Application

(PWA) pada E-Commerce,” Techno.Com, vol. 18, no. 3,

pp. 227–235, Aug. 2019, doi: 10.33633/tc.v18i3.2400.

[9] O. Adetunji, C. Ajaegbu, N. Otuneme, and O. J.

Omotosho, “Dawning of Progressive Web Applications

(PWA): Edging Out the Pitfalls of Traditional Mobile

Development,” Technology, and Sciences (ASRJETS)

American Scientific Research Journal for Engineering,

vol. 68, no. 1, pp. 85–99, 2020, [Online]. Available:

http://asrjetsjournal.org/

[10] D. Haryanto, Z. Reno, and S. Elsi, “Analisis

Performance Progressive Web Apps Pada Aplikasi

Shopee”.

[11] A. D. Rebecca Fransson, “Comparing Progressive Web

Applications with Native Android Applications,”

Linnaeus University, Faculty of Technology, Sweden,

2017.

[12] Farid Said Tahirshah, “Comparison between Progressive

Web App and Regular Web App,” Blekinge Institute of

Technology, Sweden, 2019.

	1. Introduction
	2. Related Work
	3. Methodology
	3.1 System Requirement
	3.2 Design Apps Simulation
	3.3 Testing
	3.4 Result and Analysis

	4. Result and Discussion
	4.1 Design Apps Simulation
	4.2 Testing
	4.3 Results and Analysis

	5. Conclusions
	References

