Comparison of Naïve Bayes and Random Forest Algorithm in Webtoon Application Sentiment Analysis

Fadhila Tangguh Admojo, Slamet Risnanto, Ai Wulan Windiawati, Muhammad Innuddin, Desti Mualfah

Abstract

The Webtoon application has become one of the popular platforms for reading comics digitally. Webtoons, as a form of digital comics, present various types of comic content. The success of a Webtoon application depends greatly on understanding the preferences and views of its users. User evaluations of Webtoon applications can provide valuable insight into user satisfaction levels, as well as identify problems that need to be fixed by developers. In this research, Sentiment Analysis was applied to user reviews of the Webtoon Application on the Google Play Store. This research uses two different classification algorithms, namely Naïve Bayes and Random Forest, with the aim of comparing their performance in the context of sentiment analysis of user reviews of Webtoon applications. The results of this research are expected to provide an overview of the most suitable algorithm for conducting sentiment analysis classification in Webtoon applications. In collecting the dataset, we involved webtoon user reviews covering various sentiments, such as positive, negative, and neutral. However, in this analysis, the focus is given to two types of sentiment, namely positive and negative. We apply Naïve Bayes and Random Forest algorithms to perform sentiment classification on the reviews. Performance evaluation is carried out by considering metrics such as accuracy, precision, recall, and F1-score. The results of implementing these two algorithms are an accuracy of 74% Naïve Bayes, and 88% Random Forest. It can be concluded that the Random Forest algorithm is superior to the Naïve Bayes algorithm. With this, the Random Forest algorithm becomes a recommendation for classifying sentiment analysis for Webtoon applications with greater accuracy.

Full Text:

PDF (23-28)

References

A. F. Lestari and I. Irwansyah, “Line Webtoon Sebagai Industri Komik Digital,” SOURCE : Jurnal Ilmu Komunikasi, vol. 6, no. 2, p. 134, Oct. 2020, doi: 10.35308/source.v6i2.1609.

J.-H. Kim and J. Yu, “Platformizing Webtoons: The Impact on Creative and Digital Labor in South Korea,” Soc Media Soc, vol. 5, no. 4, p. 205630511988017, Oct. 2019, doi: 10.1177/2056305119880174.

M. T. Ghulam, H. L. Nurtaat, H. Lail, and I. M. Sujana, “The Effectiveness of Using Webtoon Applications in Teaching Reading Comprehension at The Eighth Grade of SMP Negeri 11 Mataram,” Jurnal Ilmiah Profesi Pendidikan, vol. 8, no. 2, pp. 1043–1049, May 2023, doi: 10.29303/jipp.v8i2.1411.

N. Agustina, D. H. Citra, W. Purnama, C. Nisa, and A. R. Kurnia, “Implementasi Algoritma Naive Bayes untuk Analisis Sentimen Ulasan Shopee pada Google Play Store,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 2, no. 1, pp. 47–54, Apr. 2022, doi: 10.57152/malcom.v2i1.195.

M. Ariel and D. Furwana, “Developing the Content of Webtoon Comic Application as Supporting Media in Learning English Grammar,” 2020.

R. Wahyudi and G. Kusumawardana, “Analisis Sentimen pada Aplikasi Grab di Google Play Store Menggunakan Support Vector Machine,” Jurnal Informatika, vol. 8, no. 2, pp. 200–207, Sep. 2021, doi: 10.31294/ji.v8i2.9681.

F. Aftab et al., “A Comprehensive Survey on Sentiment Analysis Techniques,” International Journal of Technology, vol. 14, no. 6, p. 1288, Oct. 2023, doi: 10.14716/ijtech.v14i6.6632.

H. Chyntia Morama, D. E. Ratnawati, and I. Arwani, “Analisis Sentimen berbasis Aspek terhadap Ulasan Hotel Tentrem Yogyakarta menggunakan Algoritma Random Forest Classifier,” Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer (JPTIIK), vol. 6, no. 4, pp. 1702–1708, 2022, [Online]. Available: http://j-ptiik.ub.ac.id

I. Kurniawan et al., “Perbandingan Algoritma Naive Bayes Dan SVM Dalam Sentimen Analisis Marketplace Pada Twitter,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 10, no. 1, 2023, [Online]. Available: http://jurnal.mdp.ac.id

Samsir et al., “Naives Bayes Algorithm for Twitter Sentiment Analysis,” J Phys Conf Ser, vol. 1933, no. 1, p. 012019, Jun. 2021, doi: 10.1088/1742-6596/1933/1/012019.

Ernianti Hasibuan and Elmo Allistair Heriyanto, “ANALISIS SENTIMEN PADA ULASAN APLIKASI AMAZON SHOPPING DI GOOGLE PLAY STORE MENGGUNAKAN NAIVE BAYES CLASSIFIER,” Jurnal Teknik dan Science, vol. 1, no. 3, pp. 13–24, Oct. 2022, doi: 10.56127/jts.v1i3.434.

Z. Sun, G. Wang, P. Li, H. Wang, M. Zhang, and X. Liang, “An improved random forest based on the classification accuracy and correlation measurement of decision trees,” Expert Syst Appl, vol. 237, p. 121549, Mar. 2024, doi: 10.1016/j.eswa.2023.121549.

F. A. Larasati, D. E. Ratnawati, and B. T. Hanggara, “Analisis Sentimen Ulasan Aplikasi Dana dengan Metode Random Forest,” Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer (JPTIIK), vol. 6, no. 9, pp. 4305–4313, 2022, [Online]. Available: http://j-ptiik.ub.ac.id

S. Lee, C. Lee, K. G. Mun, and D. Kim, “Decision Tree Algorithm Considering Distances Between Classes,” IEEE Access, vol. 10, pp. 69750–69756, 2022, doi: 10.1109/ACCESS.2022.3187172.

Fuad Amirullah, Syariful Alam, and M.Imam Sulistyo S, “Analisis Sentimen Terhadap Kinerja KPU Menjelang Pemilu 2024 Berdasarkan Opini Twitter Menggunakan Naïve Bayes,” STORAGE: Jurnal Ilmiah Teknik dan Ilmu Komputer, vol. 2, no. 3, pp. 69–76, Aug. 2023, doi: 10.55123/storage.v2i3.2293.

T. Ridwansyah, “Implementasi Text Mining Terhadap Analisis Sentimen Masyarakat Dunia Di Twitter Terhadap Kota Medan Menggunakan K-Fold Cross Validation Dan Naïve Bayes Classifier,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 2, no. 5, pp. 178–185, Apr. 2022, doi: 10.30865/klik.v2i5.362.

T. Aksoy, S. Gülseçen, and S. Çelik, “Data Pre-processing in Text Mining,” in Who Runs the World: Data, Istanbul University Press, 2020, pp. 123–144. doi: 10.26650/B/ET06.2020.011.07.

L. Havrlant and V. Kreinovich, “A simple probabilistic explanation of term frequency-inverse document frequency (tf-idf) heuristic (and variations motivated by this explanation),” Int J Gen Syst, vol. 46, no. 1, pp. 27–36, Jan. 2017, doi: 10.1080/03081079.2017.1291635.

Refbacks

  • There are currently no refbacks.