Development Prediction Model to Optimize Cooperative Loans Based on Machine Learning Algorithms
Abstract
Full Text:
PDF (29-34)References
A. S. Ningsih, D. D. Suprapti, and N. Fibrianti, “The Importance of Applying the Membership Value Toward Savings and Loans Cooperatives in Indonesia,” Sriwijaya Law Review, vol. 3, no. 2, p. 225, Jul. 2019, doi: 10.28946/slrev.Vol3.Iss2.235.pp225-234.
C.-M. Kang, M.-C. Wang, and L. Lin, “Financial Distress Prediction of Cooperative Financial Institutions—Evidence for Taiwan Credit Unions,” International Journal of Financial Studies, vol. 10, no. 2, p. 30, Apr. 2022, doi: 10.3390/ijfs10020030.
D. Adi Setya Rahardjo, “The Role of Indonesian Credit Cooperatives Towards Strengthening Financial Literacy and Improving Financial Behavior.”
A. Nursyahriana, M. Hadjat, and I. Tricahyadinata, “Analisis Faktor Penyebab Terjadinya Kredit Macet,” FORUM EKONOMI, vol. 19, no. 1, 2017.
D. Máté, H. Raza, and I. Ahmad, “Comparative Analysis of Machine Learning Models for Bankruptcy Prediction in the Context of Pakistani Companies,” Risks, vol. 11, no. 10, p. 176, Oct. 2023, doi: 10.3390/risks11100176.
S. Syafrudin, R. A. Nugraha, K. Handayani, S. Linawati, and W. Gata, “Prediksi Status Pinjaman Bank dengan Deep Learning Neural Network,” Jurnal Teknik Komputer, vol. 7, no. 2, pp. 130–135, Jul. 2021, doi: 10.31294/jtk.v7i2.10474.
P. Addo, D. Guegan, and B. Hassani, “Credit Risk Analysis Using Machine and Deep Learning Models,” Risks, vol. 6, no. 2, p. 38, Apr. 2018, doi: 10.3390/risks6020038.
Kadek Dwi Pradnyana and Raden Aswin Rahadi, “Loan Default Prediction in Microfinance Group Lending with Machine Learning,” International Journal of Business and Technology Management, Jan. 2023, doi: 10.55057/ijbtm.2022.4.4.8.
T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA: ACM, Aug. 2018, pp. 785–794. doi: 10.1145/2939672.2939785.
L. Munkhdalai, T. Munkhdalai, O.-E. Namsrai, J. Lee, and K. Ryu, “An Empirical Comparison of Machine-Learning Methods on Bank Client Credit Assessments,” Sustainability, vol. 11, no. 3, p. 699, Jan. 2019, doi: 10.3390/su11030699.
L. Zhu, D. Qiu, D. Ergu, C. Ying, and K. Liu, “A study on predicting loan default based on the random forest algorithm,” Procedia Comput Sci, vol. 162, pp. 503–513, 2019, doi: 10.1016/j.procs.2019.12.017.
S. I. Serengil, S. Imece, U. G. Tosun, E. B. Buyukbas, and B. Koroglu, “A Comparative Study of Machine Learning Approaches for Non Performing Loan Prediction,” in 2021 6th International Conference on Computer Science and Engineering (UBMK), IEEE, Sep. 2021, pp. 326–331. doi: 10.1109/UBMK52708.2021.9558894.
A. S. Aphale and S. R. Shinde, “Predict Loan Approval In Banking Systemmachine Learning Approach for Cooperative Banks Loan Approval.” [Online]. Available: www.ijert.org
Refbacks
- There are currently no refbacks.