Classification Of The Maturity Level Of Glutinous Rice Tape Fermentation Using Convolutional Neural Network
Abstract
Full Text:
PDF (8-15)References
D. Candra, G. Wibisono, M. Ayu, and M. Afrad, “LEDGER: Journal Informatic and Information Technology Transfer Learning model Convolutional Neural Network menggunakan VGG-16 untuk Klasifikasi Tumor Otak pada Citra Hasil MRI,” Open Access Ledger, vol. 3, no. 1, 2024.
V. Anand, S. Gupta, D. Koundal, S. Mahajan, A. K. Pandit, and A. Zaguia, “Deep learning based automated diagnosis of skin diseases using dermoscopy,” Comput. Mater. Contin., vol. 71, no. 2, pp. 3145–3160, 2022, doi: 10.32604/cmc.2022.022788.
Murinto, “Klasifikasi Penyakit Kulit Wajah Menggunakan Metode Convolutional Neural Network Classification,” vol. 18, no. 2, pp. 183–190, 2021, [Online]. Available: https://eprints.umm.ac.id/79440/%0Ahttps://eprints.umm.ac.id/79440/1/Pendahuluan.pdf
H. S. Gill, O. I. Khalaf, Y. Alotaibi, S. Alghamdi, and F. Alassery, “Fruit Image Classification Using Deep Learning,” Comput. Mater. Contin., vol. 71, no. 2, pp. 5135–5150, 2022, doi: 10.32604/cmc.2022.022809.
S. Ashari, G. J. Yanris, and I. Purnama, “Oil Palm Fruit Ripeness Detection using Deep Learning,” Sinkron, vol. 7, no. 2, pp. 649–656, 2022, doi: 10.33395/sinkron.v7i2.11420.
A. Saputro, S. Mu’min, Moch. Lutfi, and H. Putri, “Deep Transfer Learning Dengan Model Arsitektur Vgg16 Untuk Klasifikasi Jenis Varietas Tanaman Lengkeng Berdasarkan Citra Daun,” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 2, pp. 609–614, 2022, doi: 10.36040/jati.v6i2.5456.
A. Kholik, “Klasifikasi Menggunakan Convolutional Neural Network (Cnn) Pada Tangkapan Layar Halaman Instagram,” J. Data Min. dan Sist. Inf., vol. 2, no. 2, p. 10, 2021, doi: 10.33365/jdmsi.v2i2.1345.
M. Z. Ersyad, K. N. Ramadhani, and A. Arifianto, “Pengenalan Bentuk Tangan Dengan Convolutional Neural Network (Cnn),” eProceedings Eng., vol. 7, no. 2, pp. 8212–8222, 2020.
D. H. Putra and V. Yudisthiana, “Perbandingan Tingkat Akurasi Arsitektur Convolutionsl Neural Network untuk Model Deteksi Penggunaan Masker Secara Otomatis ( Comparison of Convolutional Neural Network Architecture Accuracy Levels for Automatic Mask Use Detection Models )”.
N. Ho and Y. C. Kim, “Evaluation of transfer learning in deep convolutional neural network models for cardiac short axis slice classification,” Sci. Rep., vol. 11, no. 1, pp. 1–11, 2021, doi: 10.1038/s41598-021-81525-9.
D. Han, Q. Liu, and W. Fan, “A new image classification method using CNN transfer learning and web data augmentation,” Expert Syst. Appl., vol. 95, pp. 43–56, 2018, doi: 10.1016/j.eswa.2017.11.028.
“Confusion Matrix,” SpringerReference. 2012. doi: 10.1007/springerreference_178869
Refbacks
- There are currently no refbacks.