An Analysis of Classification Method Performance on Handwritten Lontara Numerals

Faida Daeng Bustam, Purnawansyah Purnawansyah, Huzain Azis

Abstract

The research investigates the performance of various classification methods on handwritten Lontara digits, a script used by the Bugis and Makassar communities in South Sulawesi, Indonesia. The dataset comprises 10,890 samples from 99 individuals, categorized into 10 classes (digits 0-9). The study employs the K-Nearest Neighbors (KNN), Gaussian Naive Bayes (GNB), and Nu-Support Vector Classifier (NuSVC) algorithms, implementing cross-validation to assess accuracy, precision, recall, and F1 score. The results indicate varying performance across classifiers, with GNB showing the highest recall, while KNN and NuSVC display moderate effectiveness. The study concludes with recommendations for further improving classification accuracy through enhanced feature extraction and algorithm optimization.

Full Text:

PDF (98-105)

References

A. El-Sawy, M. Loey, and H. El-Bakry, “Arabic Handwritten Characters Recognition using Convolutional Neural Network,” 2019 10th International Conference on Information and Communication Systems, ICICS 2019, vol. 5, pp. 147–151, 2017, doi: 10.1109/IACS.2019.8809122.

M. Dima Genemo, “Federated Learning for Bronchus Cancer Detection Using Tiny Machine Learning Edge Devices,” Indonesian Journal of Data and Science, vol. 5, no. 1, pp. 64–69, Mar. 2024, doi: 10.56705/ijodas.v5i1.116.

X. Wang, “Machine learning-enabled risk prediction of chronic obstructive pulmonary disease with unbalanced data,” Comput Methods Programs Biomed, vol. 230, 2023, doi: 10.1016/j.cmpb.2023.107340.

G. Kunapuli, Ensemble Methods for Machine Learning. Shelter Island, NY 11964: Manning Publications, 2023.

A. Y. Kusdiyanto and Y. Pristyanto, “Machine Learning Models for Classifying Imbalanced Class Datasets Using Ensemble Learning,” 2022 5th International Seminar on …, 2022, [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10052887/

R. Singh, T. Ahmed, A. Kumar, A. K. Singh, and ..., “Imbalanced breast cancer classification using transfer learning,” … ACM transactions on …, 2020, [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9037082/

Z. M. Zain, “Heterogeneous ensemble classifiers for Malay syllables classification,” AIP Conference Proceedings, vol. 2291. 2020. doi: 10.1063/5.0023094.

L. Cheng, R. Guo, K. S. Candan, and H. Liu, “Representation learning for imbalanced cross-domain classification,” Proceedings of the 2020 SIAM …, 2020, doi: 10.1137/1.9781611976236.54.

Y. Liu, “Imbalanced dataset classification algorithm based on NDSVM,” J Phys Conf Ser, 2021, doi: 10.1088/1742-6596/1871/1/012153.

I. I. Saputri, P. Purnawansyah, and ..., “Implementasi Metode Naïve Bayes Pada Pengenalan Tulisan Tangan Lontara,” Buletin Sistem Informasi …, 2021, [Online]. Available: https://jurnal.fikom.umi.ac.id/index.php/BUSITI/article/view/845

H. Syahputra and R. G. A. Simanjorang, “Penerapan Algoritma K-Nearest Neighbor (KNN) dalam Pengelanan Pola Tulisan Tangan Angka 0-9,” Dinamik, 2023, [Online]. Available: https://www.unisbank.ac.id/ojs/index.php/fti1/article/view/9360

V. Oktavia and N. Wijaya, “Pengenalan Tulisan Tangan Huruf Latin Bersambung Menggunakan Local Binary Pattern dan K-Nearest Neighbor,” JISKA (Jurnal Informatika Sunan Kalijaga), [Online]. Available: https://ejournal.uin-suka.ac.id/saintek/JISKA/article/view/3515

I. P. Adi Pratama, E. S. Jullev Atmadji, D. A. Purnamasar, and E. Faizal, “Evaluating the Performance of Voting Classifier in Multiclass Classification of Dry Bean Varieties,” Indonesian Journal of Data and Science, vol. 5, no. 1, pp. 23–29, Mar. 2024, doi: 10.56705/ijodas.v5i1.124.

H. Azis and F. D. Bustam, “Handwritten Lontara Numerals (0-9) Image Dataset,” Mendeley Data. Mendeley Data, 2024.

W. Ye, Y. Xia, and Q. Wang, “An Improved Canny Algorithm for Edge Detection,” Journal of Computational Information Systems, vol. 75, pp. 1516–1523, 2011, doi: 10.1109/WCSE.2009.718.

B. S. Waluyo Poetro, ⁠⁠Eny Maria, H. Zein, E. Najwaini, and D. H. Zulfikar, “Advancements in Agricultural Automation: SVM Classifier with Hu Moments for Vegetable Identification,” Indonesian Journal of Data and Science, vol. 5, no. 1, pp. 15–22, Mar. 2024, doi: 10.56705/ijodas.v5i1.123.

A. P. Wibowo, M. Taruk, ⁠⁠Thomas Edyson Tarigan, and M. Habibi, “Improving Mental Health Diagnostics through Advanced Algorithmic Models: A Case Study of Bipolar and Depressive Disorders,” Indonesian Journal of Data and Science, vol. 5, no. 1, pp. 8–14, Mar. 2024, doi: 10.56705/ijodas.v5i1.122.

B. S. Waluyo Poetro, ⁠⁠Eny Maria, H. Zein, E. Najwaini, and D. H. Zulfikar, “Advancements in Agricultural Automation: SVM Classifier with Hu Moments for Vegetable Identification,” Indonesian Journal of Data and Science, vol. 5, no. 1, pp. 15–22, Mar. 2024, doi: 10.56705/ijodas.v5i1.123.

A. Sinra and Husni Angriani, “Automated Classification of COVID-19 Chest X-ray Images Using Ensemble Machine Learning Methods,” Indonesian Journal of Data and Science, vol. 5, no. 1, pp. 45–53, Mar. 2024, doi: 10.56705/ijodas.v5i1.127.

I. G. Iwan Sudipa, R. A. Azdy, I. Arfiani, N. M. Setiohardjo, and Sumiyatun, “Leveraging K-Nearest Neighbors for Enhanced Fruit Classification and Quality Assessment,” Indonesian Journal of Data and Science, vol. 5, no. 1, pp. 30–36, Mar. 2024, doi: 10.56705/ijodas.v5i1.125.

R. Obiedat, R. Qaddoura, A. Z. Ala’M, L. Al-Qaisi, and ..., “Sentiment analysis of customers’ reviews using a hybrid evolutionary svm-based approach in an imbalanced data distribution,” IEEE …, 2022, [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9706209/

B. Huang, Y. Zhu, Z. Wang, and Z. Fang, “Imbalanced data classification algorithm based on clustering and SVM,” Journal of Circuits, Systems and …, 2021, doi: 10.1142/S0218126621500365.

V. Metsis, I. Androutsopoulos, and G. Paliouras, “Spam filtering with Naive Bayes - Which Naive Bayes?,” 3rd Conference on Email and Anti-Spam - Proceedings, CEAS 2006, 2006.

H. Zhang, “The optimality of Naive Bayes,” Proceedings of the Seventeenth International Florida Artificial Intelligence Research Society Conference, FLAIRS 2004, vol. 2, pp. 562–567, 2004.

Ericha Apriliyani and Y. Salim, “Analisis performa metode klasifikasi Naïve Bayes Classifier pada Unbalanced Dataset,” Indonesian Journal of Data and Science, vol. 3, no. 2, pp. 47–54, 2022, doi: 10.56705/ijodas.v3i2.45.

Refbacks

  • There are currently no refbacks.