Approximate Bayesian Inference for Bayesian Confidence Quantification in DNA Sequence Classification Using Monte Carlo Dropout Approach
Abstract
Full Text:
PDF (59-67)References
M. Sha and M. P. Rahamathulla, “Splice site recognition-deciphering Exon-Intron transitions for genetic insights using Enhanced integrated Block-Level gated LSTM model,” Gene, vol. 915, p. 148429, 2024.
A. J. Clark and J. W. Lillard Jr, “A comprehensive review of bioinformatics tools for genomic biomarker discovery driving precision oncology,” Genes, vol. 15, no. 8, p. 1036, 2024.
A. Subasi, “DNA sequence classification using artificial intelligence,” in Applications of Artificial Intelligence Healthcare and Biomedicine, Elsevier, 2024, pp. 401–415.
M. M. Uddin, J. Shiddike, A. Ahmed, and T. Ahsan, “Promoter Prediction in DNA Classification Using Machine Learning Algorithms,” in 2024 3rd International Conference on Sentiment Analysis and Deep Learning (ICSADL), IEEE, 2024, pp. 254–260.
K. Chandrashekar, V. Niranjan, A. Vishal, and A. S. Setlur, “Integration of artificial intelligence, machine learning and deep learning techniques in genomics: review on computational perspectives for NGS analysis of DNA and RNA seq data,” Curr. Bioinforma., vol. 19, no. 9, pp. 825–844, 2024.
Y. Ye et al., “Machine learning-based classification of deubiquitinase USP26 and its cell proliferation inhibition through stabilizing KLF6 in cervical cancer,” Comput. Biol. Med., vol. 168, p. 107745, 2024.
V. Nerkar, V. Kimbahune, and R. Somkunwar, “DNA Sequence Binding to specified Protein Strutcure and Classification by using CNN and k-mer Encoding Model,” in 2024 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), IEEE, 2024, pp. 1–6.
N. Y. Ahmed et al., “An Efficient Deep Learning Approach for DNA-Binding Proteins Classification from Primary Sequences,” Int. J. Comput. Intell. Syst., vol. 17, no. 1, pp. 1–14, 2024.
K.-H. Chao, A. Mao, S. L. Salzberg, and M. Pertea, “Splam: a deep-learning-based splice site predictor that improves spliced alignments,” Genome Biol., vol. 25, no. 1, p. 243, 2024.
M. Ali, D. Shah, S. Qazi, I. A. Khan, M. Abrar, and S. Zahir, “An effective deep learning-based approach for splice site identification in gene expression,” Sci. Prog., vol. 107, no. 3, p. 00368504241266588, 2024.
L. Rentao, L. Yelin, G. Lixin, and L. Mengshan, “Predicting DNA sequence splice site based on graph convolutional network and DNA graph construction,” J. King Saud Univ.-Comput. Inf. Sci., p. 102089, 2024.
L. Ngartera, M. A. Issaka, and S. Nadarajah, “Application of Bayesian Neural Networks in Healthcare: Three Case Studies,” Mach. Learn. Knowl. Extr., vol. 6, no. 4, pp. 2639–2658, 2024.
T. Yu, Z. Zou, and H. Xiong, “Can Uncertainty Quantification Enable Better Learning-based Index Tuning?,” ArXiv Prepr. ArXiv241017748, 2024.
R. Y. Oh et al., “A systematic assessment of the impact of rare canonical splice site variants on splicing using functional and in silico methods,” Hum. Genet. Genomics Adv., vol. 5, no. 3, 2024.
C. Firtina et al., “Aphmm: Accelerating profile hidden markov models for fast and energy-efficient genome analysis,” ACM Trans. Archit. Code Optim., vol. 21, no. 1, pp. 1–29, 2024.
A. O. Abhadionmhen et al., “Machine Learning Approaches for Microorganism Identification, Virulence Assessment, and Antimicrobial Susceptibility Evaluation Using DNA Sequencing Methods: A Systematic Review,” Mol. Biotechnol., pp. 1–29, 2024.
A. P. Avila Santos et al., “BioDeepfuse: a hybrid deep learning approach with integrated feature extraction techniques for enhanced non-coding RNA classification,” RNA Biol., vol. 21, no. 1, pp. 1–12, 2024.
T. Gudavarthi, S. V. R. Seri, A. C. Thadoju, P. K. Sarangi, and M. Jabbar, “DNA Sequence Classification Using RRCNN and LSTM,” in 2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT), IEEE, 2024, pp. 1–6.
G. He, Y. Zhao, and C. Yan, “Uncertainty quantification in multiaxial fatigue life prediction using Bayesian neural networks,” Eng. Fract. Mech., vol. 298, p. 109961, 2024.
A. G. Putrada, I. D. Oktaviani, M. N. Fauzan, and N. Alamsyah, “CNN Pruning for Edge Computing-Based Corn Disease Detection with a Novel NG-Mean Accuracy Loss Optimization,” Telematika, vol. 17, no. 2, pp. 68–83, 2024.
N. Alamsyah, A. P. Kurniati, and others, “A Novel Airfare Dataset To Predict Travel Agent Profits Based On Dynamic Pricing,” in 2023 11th International Conference on Information and Communication Technology (ICoICT), IEEE, 2023, pp. 575–581.
N. Alamsyah, T. P. Yoga, B. Budiman, and others, “IMPROVING TRAFFIC DENSITY PREDICTION USING LSTM WITH PARAMETRIC ReLU (PReLU) ACTIVATION,” JITK J. Ilmu Pengetah. Dan Teknol. Komput., vol. 9, no. 2, pp. 154–160, 2024.
N. Alamsyah, B. Budiman, T. P. Yoga, and R. Y. R. Alamsyah, “XGBOOST HYPERPARAMETER OPTIMIZATION USING RANDOMIZEDSEARCHCV FOR ACCURATE FOREST FIRE DROUGHT CONDITION PREDICTION,” J. Pilar Nusa Mandiri, vol. 20, no. 2, pp. 103–110, 2024.
Refbacks
- There are currently no refbacks.