Naïve Bayes dan Support Vector Machine Berbasis PSO untuk Seleksi Fitur pada Sentiment Analysis

Ahmad Fio Nugraha

Abstract

Sentiment analysis is a process that aims to determine the content of the dataset in the form of positive, negative and neutral text. Currently the opinion of the general public is an important source of decision making. Social media is a place to express public opinion on an object, problem or event. Such as the government's policy regarding the relocation of the capital city of Indonesia, which was originally in Jakarta to Kalimantan, did not escape the attention of the public, especially Twitter users. One of the problems in sentiment analysis is the high number of attributes and dimensions in the dataset. In this study, sentiment analysis was carried out on the relocation of the national capital using the Naïve Bayes method, and the Support Vector Machine based on Particle Swarm Optimization (PSO). The advantages of the Support Vector Machine are High dimensional space and Vector document space. Feature selection greatly affects the performance of the classification, the use of PSO as feature selection to improve accuracy. The results of this study obtained the best accuracy value of 96.45% and the AUC value of 0.920 from the application of PSO on the Support Vector Machine. This result has increased when compared to the experimental results using Naïve Bayes and Support Vector Machine without PSO. The application of PSO on the Support Vector Machine is proven to get better accuracy results in predicting sentiment analysis on the dataset of moving the State Capital.

Full Text:

PDF (56-61)

References

N. S. Wardani, A. Prahutama, dan P. Kartikasari, “Analisis Sentimen Pemindahan Ibu Kota Negara Dengan Klasifikasi Naïve Bayes Untuk Model Bernoulli Dan Multinomial,†J. Gaussian, vol. 9, no. 3, hal. 237–246, 2020, doi: 10.14710/j.gauss.v9i3.27963.

A. M. Zuhdi, E. Utami, dan S. Raharjo, “Analisis sentiment twitter terhadap capres Indonesia 2019 dengan metode K-NN,†J. Inf. Politek. Indonusa Surakarta, vol. 5, hal. 1–7, 2019

A. P. Giovani, A. Ardiansyah, T. Haryanti, L. Kurniawati, dan W. Gata, “Analisis Sentimen Aplikasi Ruang Guru Di Twitter Menggunakan Algoritma Klasifikasi,†J. Teknoinfo, vol. 14, no. 2, hal. 115, 2020, doi: 10.33365/jti.v14i2.679.

R. Risawati, S. Ernawati, dan I. Maryani, “Optimasi Parameter Pso Berbasis Svm Untuk Analisis Sentimen Review Jasa Maskapai Penerbangan Berbahasa Inggris,†EVOLUSI J. Sains dan Manaj., vol. 8, no. 2, hal. 64–71, 2020, doi: 10.31294/evolusi.v8i2.9248.

H. B. Rochmanto dan E. M. P. Hermanto, “Analisis Sentimen Pengguna Twitter terhadap Kebijakan Pemindahan Ibukota Indonesia Menggunakan Metode NBC dan SVM,†Pros. Semin. Nas. Stat. IX 2020, vol. 9, no. 2020, hal. 1–11, 2020

V. K. S. Que, A. Iriani, dan H. D. Purnomo, “Analisis Sentimen Transportasi Online Menggunakan Support Vector Machine Berbasis Particle Swarm Optimization,†J. Nas. Tek. Elektro dan Teknol. Inf., vol. 9, no. 2, hal. 162–170, 2020, doi: 10.22146/jnteti.v9i2.102.

E. Mas’udah, E. D. Wahyuni, dan A. A. Arifiyanti, “Analisis Sentimen: Pemindahan Ibu Kota Indonesia Pada Twitter,†J. Inform. dan Sist. Inf., vol. 1, no. 2, hal. 397–401, 2020.

A. Taufiq, “MEDIA SOSIAL TWITTER MENGGUNAKAN ALGORITMA NAIVE Text Mining,†Pelita Teknol. J. Ilm. Inform. Arsit. dan Lingkung., vol. 14, no. 1, hal. 1–15, 2019,

I. Kurniawati dan H. F. Pardede, “Hybrid Method of Information Gain and Particle Swarm Optimization for Selection of Features of SVM-Based Sentiment Analysis,†2018 Int. Conf. Inf. Technol. Syst. Innov. ICITSI 2018 - Proc., hal. 1–5, 2018, doi: 10.1109/ICITSI.2018.8695953.

R. Darmawan dan A. Surahmat, “Optimalisasi Support Vector Machine ( SVM ) Berbasis Particle Swarm Optimization ( PSO ) Pada Analisis Sentimen Terhadap Official Account Ruang Guru Di Twitter,†vol. 22, no. 2, hal. 143–152, 2022.

Refbacks