Forecasting Flood Vulnerability in Pontianak using Multiple Linear Regression and Geospatial Information Systems (GIS)

Firda Islamaya Farhan, Ahmad Cahyono Adi

Abstract

Flood disasters frequently happen in locations with specific geographic characteristics, such as close proximity to rivers and excessive rainfall, especially during the rainy season, making most soil types contain clay and unsuitable for water absorption. One of the Indonesian cities that experiences frequent flooding is Pontianak City. Based on the parameters established in the preceding circumstances, multiple linear regression methods are used to forecast and anticipate the degree of flood risk in Pontianak City. The Quantum GIS application creates a digital map that displays the score attained in each sub-district. This is done to identify the flood-prone locations in Pontianak City and make the mitigation activities more focused and effective.

Full Text:

PDF (9-13)

References

A. Findayani, “Kesiap siagaan masyarakat dalam penanggulangan banjir di Kota Semarang,†J. Geogr. Media Inf. Pengemb. Dan Profesi Kegeografian, vol. 12, no. 1, pp. 102–114, 2018.

D. Pratiwi, R. O. Sinia, and A. Fitri, “Peningkatan Pengetahuan Masyarakat Terhadap Drainase Berporus yang Difungsikan Sebagai Tempat Peresapan Air Hujan,†J. Soc. Sci. Technol. Community Serv., vol. 1, no. 2, 2020.

G. Hediyanti, R. Rianti, and P. A. Pynanjung, "Perspective of the Application of Low Impact Development (LID) to Deal with Floods to Strengthen the Economic Structure of Pontianak City," J. Borneo Adm., vol. 18, no. 1, pp. 33–50, 2022.

A. Marbun, D. Nofriansyah, and E. Elfritriani, “Analisa Data Mining Untuk Mengestimasi Potensi Curah Hujan Dengan Menggunakan Metode Regresi Linear Berganda,†J. Cyber Tech, vol. 4, no. 2, 2021.

M. Saragih, “PENGARUH KOMUNIKASI INTERPERSONAL TERHADAP PENINGKATAN KINERJA PEGAWAI DINAS BINA MARGA DAN PENGAIRAN PEMATANGSIANTAR,†J. Ilm. AccUsi, vol. 2, no. 1, pp. 49–58, 2020.

A. Luthfiarta, A. Febriyanto, H. Lestiawan, and W. Wicaksono, “Analisa Prakiraan Cuaca dengan Parameter Suhu, Kelembaban, Tekanan Udara, dan Kecepatan Angin Menggunakan Regresi Linear Berganda,†JOINS (Journal Inf. Syst., vol. 5, no. 1, pp. 10–17, 2020, doi 10.33633/joins. v5i1. 2760, 2020.

R. Yulistiani, I. Ramadhan, Q. Said, and M. M. Santoni, “Metode Regresi Linier Berganda dan SVR dalam Menentukan Tingkat Pengaruh Cuaca Terhadap Produktivitas Padi di Indonesia,†SEINASI-KESI, vol. 1, no. 1, pp. 29–34, 2018.

P. J. Alpeshbhai and S. Vohra, "SARS-CoV-2 Future Forecasting Using Multi-Linear Regression Model," Int. J. Intell. Syst. Appl. Eng., vol. 10, no. 2, pp. 159–165, 2022.

Refbacks

  • There are currently no refbacks.