Naive Bayes and Wordcloud for Sentiment Analysis of Halal Tourism in Lombok Island Indonesia

Irvandi Irvandi, Bambang Irawan, Odi Nurdiawan

Abstract

Lombok is one of the halal tourist destinations in Indonesia and has been recognized by the world. To examine these assumptions based on sources from tourist opinion, it is necessary to carry out a sentiment analysis whether their presence is as expected. Google Maps is a platform that can show the location of the island of Lombok along with written reviews from tourists who have visited. The collection of review data is done through the Web Scraping technique on the Google Maps Review, then the data is processed using RapidMiner. The algorithm used is Naive Bayes, an algorithm that uses probability or the concept of opportunity in classification. A word cloud visualization is also displayed to bring up words that tourists often say. 1493 data were obtained after Web scraping and cleansing had been labeled with positive and negative sentiment categories. Preprocessing is carried out which includes tokenize, filter token by length, transform case, stopword, and stemming, then classification using the Naive Bayes algorithm. From the results of testing the Naive Bayes algorithm model, an accuracy rate of 74.75%. Word Cloud visualization also found the top words included "indah", "wisata". “pantaiâ€, “alamâ€, “gunungâ€, and “masjidâ€.

Full Text:

PDF (30-35)

References

M. Ayu Rizaty, “Jumlah Penduduk Muslim Indonesia Terbesar di Dunia pada 2022,†DataIndonesia.id, Nov. 03, 2022. https://dataindonesia.id/ragam/detail/populasi-muslim-indonesia-terbesar-di-dunia-pada-2022 (accessed Jan. 09, 2023).

S. R. Pratiwi, S. Dida, and N. A. Sjafirah, “Strategi Komunikasi dalam Membangun Awareness Wisata Halal di Kota Bandung,†Jurnal Kajian Komunikasi, vol. 6, no. 1, 2018, doi: 10.24198/jkk.v6i1.12985.

V. W. D. Thomas and F. Rumaisa, “Analisis Sentimen Ulasan Hotel Bahasa Indonesia Menggunakan Support Vector Machine dan TF-IDF,†JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 3, p. 1767, Jul. 2022, doi: 10.30865/mib.v6i3.4218.

A. Rifa’i, H. Sujaini, and D. Prawira, “Sentiment Analysis Objek Wisata Kalimantan Barat Pada Google Maps Menggunakan Metode Naive Bayes,†Jurnal Edukasi dan Penelitian Informatika (JEPIN), vol. 7, no. 3, p. 400, Dec. 2021, doi: 10.26418/jp.v7i3.48132.

F. U. Haq, “PENGGUNAAN GOOGLE REVIEW SEBAGAI PENILAIAN KEPUASAN PENGUNJUNG DALAM PARIWISATA,†Tornare, vol. 2, no. 1, p. 10, Jan. 2020, doi: 10.24198/tornare.v2i1.25826.

F. Amaliah and D. I. K. Nuryana, “Perbandingan Akurasi Metode Lexicon Based Dan Naive Bayes Classifier Pada Analisis Sentimen Pendapat Masyarakat Terhadap Aplikasi Investasi Pada Media Twitter,†Journal of Informatics and Computer Science, vol. 03, 2022.

B. S. Gandhi, D. A. Megawaty, and D. Alita, “Aplikasi Monitoring dan Penentuan Peringkat Kelas Menggunakan Naive Bayes Classifier,†Jurnal Informatika dan Rekayasa Perangkat Lunak, vol. 2, no. 1, pp. 54–63, Apr. 2021, doi: 10.33365/jatika.v2i1.722.

D. Siti Utami and A. Erfina, “Analisis Sentimen Objek Wisata Bali Di Google Maps Menggunakan Algoritma Naive Bayes,†2022.

B. R. Atmadja, “Analisis Sentimen Bahasa Indonesia Pada Tempat Wisata di Kabupaten Sukabumi Dengan Naïve Bayes,†vol. 15, no. 2, pp. 371–382, 2022, [Online]. Available: http://journal.stekom.ac.id/index.php/elkomï‚ page371

D. A. Deviacita, H. P. Sasty, and H. Muhardi, “Implementasi Web Scraping untuk Pengambilan Data pada Situs Marketplace,†vol. 7, no. 4, 2019.

Sudianto, P. Wahyuningtias, H. Warih Utami, U. Ahda Raihan, H. Nur Hanifah, and Y. Nicholas Adanson, “COMPARISON OF RANDOM FOREST AND SUPPORT VECTOR MACHINE METHODS ON TWITTER SENTIMENT ANALYSIS (CASE STUDY: INTERNET SELEBGRAM RACHEL VENNYA ESCAPE FROM QUARANTINE),†Jurnal Teknik Informatika (JUTIF), vol. 3, no. 1, pp. 141–145, 2022, doi: 10.20884/1.jutif.2022.3.1.168.

Refbacks

  • There are currently no refbacks.