Implementation of Data Mining at Laboratory Vocational High School Using The C4.5 Algorithm to Predict Students Major Preferences
Abstract
Education or the learning process is the primary thing for human life. Therefore, a place for acquiring knowledge is established, which is called a school. Schools have their own levels, ranging from early childhood education to higher education institutions. When students enter high school, they are required to make decisions in choosing their majors. Accompanied by technological advancements, the issues in high school major selection can be effectively and efficiently addressed using data mining. Common issues that usually arise include lack of accuracy, precision, and requiring a significant amount of time. Hence, the issues within major selection necessitate the use of data mining, employing the C4.5 algorithm method, to determine the accuracy and precision of large datasets. This research achieved with RapidMiner the result is accuracy score of 94.44%, precision of 81.37%, and sensitivity of 74.00%. Additionally, it also generated a decision tree and with Python has an accuracy of 93% because it automatically rounds the values, so there is no significant difference between the two tools. This proves that the C4.5 algorithm produces fairly accurate performance.
Full Text:
PDF (65-70)References
Asroni, A., Masajeng Respati, B., & Riyadi, S. (2018). Penerapan Algoritma C4.5 untuk Klasifikasi Jenis Pekerjaan Alumni di Universitas Muhammadiyah Yogyakarta. Semesta Teknika, 21(2). https://doi.org/10.18196/st.212222
Dewi, E., Mulyani, S., Agustina, I., Ismanto, R., Susanto, S. J., Adhi, S. S., Rismayanti, T. S., Studi, P., Informatika, T., & Tasikmalaya, S. (2021). Klasifikasi Pola Penjurusan Bidang IT Menggunakan Algoritma C4.5 Studi Kasus SMKN Manonjaya. In Jurnal TEKTRIKA (Vol. 6, Issue 1).
Eferoni Ndruru, R. L. (2018). Implementasi Data Mining Dalam Pengelompokan Jurusan yang Diminati Siswa SMK Negeri 1 Lolowa’u menggunakan Metode Clustering.
Gunawan Sudarsono, B., & Ulan Bani, A. (2020). Prediksi Mahasiswa Berpotensi Berhenti Kuliah Secara Sepihak Menggunakan Data Mining Algoritma C4.5. In Jurnal Sains Komputer & Informatika (J-SAKTI (Vol. 4, Issue 2).
Kadafi, A. R. (2018). Perbandingan Algoritma Klasifikasi Untuk Penjurusan Siswa SMA. Jurnal ELTIKOM, 2(2), 67–77. https://doi.org/10.31961/eltikom.v2i2.86
Kurniasari, R., & Fatmawati, A. (2019). Penerapan Algoritma C4.5 Untuk Penjurusan Siswa Sekolah Menengah Atas. In Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) (Vol. 8, Issue 1).
Muhamad, M., Windarto, A. P., & Suhada, S. (2019). Penerapan Algoritma C4.5 Pada Klasifikasi Potensi Siswa Drop Out. KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer), 3(1). https://doi.org/10.30865/komik.v3i1.1688
Putra, D., & Wibowo, A. (2020). Prediksi Keputusan Minat Penjurusan Siswa SMA Yadika 5 Menggunakan Algoritma Naïve Bayes. Prosiding Seminar Nasional Riset Dan Information Science (SENARIS), 2, 84–92.
Wulandari, N., & Saeful Malik, M. (2020). Jurnal Ilmiah MIKA AMIK Al Muslim Penerapan Algoritma C4.5 Untuk Penentuan Jurusan Studi di SMK Karya Guna 1 Bekasi. IV(1).
Yudhi Putra, M., & Ismiyana Putri, D. (2022). Pemanfaatan Algoritma Naïve Bayes dan K-Nearest Neighbor Untuk Klasifikasi Jurusan Siswa Kelas XI (Vol. 16, Issue 2).
Refbacks
- There are currently no refbacks.