Ekstraksi Citra menggunakan Metode GLCM dan KNN untuk Identifikasi Jenis Anggrek (Orchidaceae)

Danar Putra Pamungkas

Abstract

Orchidaceae is the Latin name of an orchid that has various shapes, colors and sizes of flowers with unique features. The shape and color of the lips or labellum is a unique orchid that is a differentiator from other plants. In general, the types of orchids have similar colors, textures and flower petals, this causes a person to have difficulty identifying orchid species, especially people who do not know the characteristics of some types of orchids. Therefore the process of identifying orchids needs to be done automatically with a computer system so that it is expected to make it easier to identify the types of orchids. In this study using the GLCM method for feature extraction and KNN method for the process of identifying orchids or orchidaceae. Stages of identification of orchid images are changing the initial size of the image, conversion into gray degrees, median filters, feature extraction of the GLCM method and identification with the KNN method. The success rate of identifying Orchidaceae or orchids reaches 80% with an average of 77%. K value influences the success rate of identification, the greater the K value the smaller the accuracy.

Full Text:

PDF 51-56

References

Sahertian, Dece Elisabeth. Sherly Meiske Seay, Keanekaragaman Jenis-jenis Anggrek di Hutan Lamasi Desa Murnaten Kecamatan Taniwel kabupaten Seram Bagian Barat Maluku, Jurnal Agrium, Vol.12 no. 1, 2015.

Rikardus, Hari Prayogo dan Hafiz Ardian, Analisis Keanekaragaman Jenis Anggrek Alam (Orchidaceae) Pada Lindung Gunung Smahung Desa Saham Kecapatan Senggah Temila Kabupaten Landak, Jurnal Hutan Lestari Vol.5 No.2, 2017.

M. Awanda, T. Rismawan., D. M. Midyanti, Aplikasi Klasifikasi Anggrek Berdasarkan warna dan bentuk bunga dengan metode LVQ berbasis web, Jurnal Coding Sistem Komputer Untan, vol 06 no. 02 hal 36-47.Pontianak, 2018

Prastyaswara, Eka Cndyasa., Ni Kadek Ayu Wirdiani, Gusti Made Arya Sasmita. Analisis Perbandingan Metode Canny, Sobel dan HSV dalam Proses Identifikasi Bunga Anggrek Hibrida, Jurnal Merpati, vol 5 no 3, Universitas Udayana, 2017

H. Wijayanto, Klasifikasi batik menggunakan metodee K-nearest Neighbour berdasarkan gray level Co-occurrance Matrices(GLCM), Teknik Informatika, Unidus, Semarang, 2015

R.R Waliyansyah, K Adi, J.E. Suseno, Implementasi Metode Gray Level Co-occurrance Matrix dalam Identifikasi Jenis Daun Tengkawang, Jurnal JNTETI vol 7 no.1, 2018

R. Widodo, Agus Wahyu Widodo, Arry Supriyanto, Pemanfaatan Ciri Gray Level Co-Occurrence Matrix (GLCM) Citra Buah Jeruk Keprok (Citrus reticulata Blanco) untuk Klasifikasi Mutu, Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, Vol. 2, No. 11, November 2018

D.P. Pamungkas, A.B. Setiawan, IMPLEMENTASI EKSTRASI FITUR DAN K-NEAREST NEIGHTBOR UNTUK IDENTIFIKASI WAJAH PERSONAL, Joutica vol 3 no 2 Lamongan : Unisla, 2018

A. Rohman, Model Algoritma K-Nearest Neighbor (K-NN) Untuk Prediksi Kelulusan Mahasiswa, Jurnal Neo Teknika, Vol. 1 No.1 2015.

F. Liantoni, dan H. Nugroho, “Klasifikasi Daun Herbal Menggunakan Naive Bayes Classifier dan K-Nearst Neighbor”, Jurnal Simantec, Vol.5, No.1, 2015

Noordama, Identifikasi Varietas Durio Zibethinus Berdasarkan Sebaran

Trikoma Daun Menggunakan GLCM dan KNN, Scientific Repository of Bogor Agricultural University, 2014

Surya, R. A., Fadhil, A. & Yudhana,Ekstraksi Ciri Metode Gray Level Co-Occurrence Matrix (GLCM) dan Filter Gabor Untuk Klasifikasi Citra Batik

Pekalongan. Jurnal Informatika: Jurnal Pengembangan IT, Volume 02 2017

H.S, Khamis, W.C, Kipruto, S. Kimani, Application of k-Nearest

Neighbor Classification in Medical Data Mining, International Journal of

Information and Communication Technology Research, Vol. 4, No, 4 ,2014

Refbacks

  • There are currently no refbacks.