Sistem Pakar Menentukan Maksimal Kalori Harian Berbasis Mobile

Teddy Santya, Cosmas Eko Suharyanto, Pastima Simanjuntak, Alex Alfandianto

Abstract

The study was conducted because of many concerning event happened in purpose of losing weight in improper methods. By the flow of time with technologies developed in this century, Smartphone became one of necessity because of the feature by many applications which helps a lot in our everyday life of humanity. The Researcher conducted this research of mobile-based application expert system which helps people properly losing their weight, this expert system is a supporting utility for taking care of dietary habit based on the amount of calorie limit calculated by this system, and recommends suitable and healthy food for users. This system is built with React Native framework. The calculation in this system is based on information of weight, height, and age provided by users, and all prediction will not be done without the provided information and every calculation is handled by web-based server-side processing which is developed using Laravel Framework. Inference method used by the researcher is Forward Chaining. This expert system will validate user's requirement to start working on losing weight by using Forward Chaining Inference method. Every successfully registered user will be able to view their calculated information by this system which is maximum calorie value, and list of healthy and recommended foods information provided by the expert herself. From the test results, the Expert System can solve the problem of giving a way to run a proper diet program by adjusting the diet with the calories needed.

Full Text:

PDF 70-77

References

Sahertian, Dece Elisabeth. Sherly Meiske Seay, Keanekaragaman Jenis-jenis Anggrek di Hutan Lamasi Desa Murnaten Kecamatan Taniwel kabupaten Seram Bagian Barat Maluku, Jurnal Agrium, Vol.12 no. 1, 2015.

Rikardus, Hari Prayogo dan Hafiz Ardian, Analisis Keanekaragaman Jenis Anggrek Alam (Orchidaceae) Pada Lindung Gunung Smahung Desa Saham Kecapatan Senggah Temila Kabupaten Landak, Jurnal Hutan Lestari Vol.5 No.2, 2017.

M. Awanda, T. Rismawan., D. M. Midyanti, Aplikasi Klasifikasi Anggrek Berdasarkan warna dan bentuk bunga dengan metode LVQ berbasis web, Jurnal Coding Sistem Komputer Untan, vol 06 no. 02 hal 36-47.Pontianak, 2018

Prastyaswara, Eka Cndyasa., Ni Kadek Ayu Wirdiani, Gusti Made Arya Sasmita. Analisis Perbandingan Metode Canny, Sobel dan HSV dalam Proses Identifikasi Bunga Anggrek Hibrida, Jurnal Merpati, vol 5 no 3, Universitas Udayana, 2017

H. Wijayanto, Klasifikasi batik menggunakan metodee K-nearest Neighbour berdasarkan gray level Co-occurrance Matrices(GLCM), Teknik Informatika, Unidus, Semarang, 2015

R.R Waliyansyah, K Adi, J.E. Suseno, Implementasi Metode Gray Level Co-occurrance Matrix dalam Identifikasi Jenis Daun Tengkawang, Jurnal JNTETI vol 7 no.1, 2018

R. Widodo, Agus Wahyu Widodo, Arry Supriyanto, Pemanfaatan Ciri Gray Level Co-Occurrence Matrix (GLCM) Citra Buah Jeruk Keprok (Citrus reticulata Blanco) untuk Klasifikasi Mutu, Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, Vol. 2, No. 11, November 2018

D.P. Pamungkas, A.B. Setiawan, IMPLEMENTASI EKSTRASI FITUR DAN K-NEAREST NEIGHTBOR UNTUK IDENTIFIKASI WAJAH PERSONAL, Joutica vol 3 no 2 Lamongan : Unisla, 2018

A. Rohman, Model Algoritma K-Nearest Neighbor (K-NN) Untuk Prediksi Kelulusan Mahasiswa, Jurnal Neo Teknika, Vol. 1 No.1 2015.

F. Liantoni, dan H. Nugroho, “Klasifikasi Daun Herbal Menggunakan Naive Bayes Classifier dan K-Nearst Neighborâ€, Jurnal Simantec, Vol.5, No.1, 2015

Noordama, Identifikasi Varietas Durio Zibethinus Berdasarkan Sebaran

Trikoma Daun Menggunakan GLCM dan KNN, Scientific Repository of Bogor Agricultural University, 2014

Surya, R. A., Fadhil, A. & Yudhana,Ekstraksi Ciri Metode Gray Level Co-Occurrence Matrix (GLCM) dan Filter Gabor Untuk Klasifikasi Citra Batik

Pekalongan. Jurnal Informatika: Jurnal Pengembangan IT, Volume 02 2017

H.S, Khamis, W.C, Kipruto, S. Kimani, Application of k-Nearest

Neighbor Classification in Medical Data Mining, International Journal of

Information and Communication Technology Research, Vol. 4, No, 4 ,2014

Refbacks

  • There are currently no refbacks.