TREN PENELITIAN KESEHATAN MENTAL DI ERA DIGITAL : Analisis biblimetrika pada basis data Scopus dengan menggunakan VosViewer dan Biblioshiny
Abstract
The existence of social media and various digital platforms in the digital era has a major impact on human mental health. Initially, this expanded access to information about mental health and allowed us to interact with people in different places. However, excessive use of social media can increase the risk of depression and anxiety due to comparisons and competition on these platforms. To maintain well-being and good mental health in the digital age, it’s important to strike a balance in using digital tools. More in-depth studies on mental health issues in the digital age are necessary to provide insight and improve well-being. It’s also important to pay attention to research trends of this issue to stay relevant. Bibliometric analysis methods are used to explore and analyze research trends, show patterns of development, highlight dominating focuses, and understand the dynamics of knowledge growth on this topic over time. This analysis uses quantitative and statistical approaches. Based on the results, the most prolific and contributing author was Adrian Aguilera, followed by JMIR Mental Health as the most productive source. The most cited phrase is 'pandemic'. Research on mental health in the digital age is mostly conducted among women who are in adolescence. Based on the word cloud, terms that most often appear in the title are 'mental health,' 'human,' 'female,' and 'adolescent.' Recent research on this topic covers a wide range of topics, including 'female,' 'male,' to 'risk factor,' while the most common focus is humans and mental health.
Keywords
Full Text:
PDFReferences
Aguilera, A., & Berridge, C. (2014). Qualitative feedback from a text messaging intervention for depression: benefits, drawbacks, and cultural differences. JMIR mHealth and uHealth, 2(4), e46. https://doi.org/10.2196/mhealth.3660
Ali, U., Waqas, A., & Ayub, M. (2022). Research Trends and Geographical Contribution in the Field of Perinatal Mental Health: A Bibliometric Analysis from 1900 to 2020. Women's Health Reports, 3(1), .661-669. DOI: http://doi.org/10.1089/whr.2021.0144
Alsharif, A. H., et al. (2021). Neuroimaging Techniques in Advertising Research: Main Applications, Development, and Brain Regions and Processes. Sustainability, 13, 6488. doi: https://doi.org/10.3390/su13116488
Alsolbi, I., et al. (2022). Different approaches of bibliometric analysis for data analytics applications in non-profit organisations. J Smart Environ Green Comput, 2, 90-104. doi: http://dx.doi.org/10.20517/jsegc.2022.09
Aria, M., & Cuccurullo, C. (2017). bibliometrix : An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. doi: https://doi.org/10.1016/j.joi.2017.08.007.
Batubara, H. S., Giatman, M., Simatupang, W., & Watrianthos, R. (2021). Pemetaan Bibliometrik Terhadap Riset pada Sekolah Menengah Kejuruan Menggunakan VOSviewer. EDUKATIF : JURNAL ILMU PENDIDIKAN, 4(1), 233–239. https://doi.org/10.31004/edukatif.v4i1.1818
Boogert, J. V. D. (2023). Impact of social and economic changes on urban community consumption patterns in the digital era. doi: 10.31219/osf.io/pb26y
Choi, N. G., & DiNitto, D. M. (2013). The digital divide among low-income homebound older adults: Internet use patterns, eHealth literacy, and attitudes toward computer/Internet use. JMIR Mental Health, 15(5). doi: 10.2196/jmir.2645
Cobo, M. J., & Herrera, F. (2011). An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. Journal of Informetrics, 5(1), 146–166.
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285-296.
de Lima Osório, F., Zuardi, A. W., Silveira, I. L. M., de Souza Crippa, J. A., Hallak, J. E. C., Pereira-Lima, K., & Loureiro, S. R. (2023). Mental health trajectories of Brazilian health workers during two waves of the COVID-19 pandemic (2020-2021). Frontiers in psychiatry, 14, 1026429. https://doi.org/10.3389/fpsyt.2023.1026429
Fitzpatrick. K. K., et al. (2017). Delivering Cognitive Behavior Therapy to Young Adults With Symptoms of Depression and Anxiety Using a Fully Automated Conversational Agent (Woebot): A Randomized Controlled Trial. JMIR Mental Health, 4(2), e19. doi: 10.2196/mental.7785
Formoso, G. (2022). The H-index is an unfair measure of scientific achievements. A proposal to address its shortcomings. doi: 10.33774/coe-2022-frk92
George, M. J., & Odgers, C. L. (2015). Seven Fears and the Science of How Mobile Technologies May Be Influencing Adolescents in the Digital Age. Perspectives on psychological science : a journal of the Association for Psychological Science, 10(6), 832–851. doi: https://doi.org/10.1177/1745691615596788
Guo, Z., Zhang, Y., & Liu, Q. (2023). Bibliometric and visualization analysis of research trend in mental health problems of children and adolescents during the COVID-19 pandemic. Front Public Health, 10, 1-14. DOI: 10.3389/fpubh.2022.1040676
Gutiérrez-Salcedo, M., Martínez, M. Á., Moral-Munoz, J. A., Herrera-Viedma, E., & Cobo, M. J. (2018). Some bibliometric procedures for analyzing and evaluating research fields. Applied Intelligence, 48, 1275–1287. https://doi.org/10.1007/s10489-017-1105-y
Karakose, T., Tülübaş, T., Papadakis, S., & Yirci, R. (2023). Evaluating the Intellectual Structure of the Knowledge Base on Transformational School Leadership: A Bibliometric and Science Mapping Analysis. Education Sciences. MDPI AG, 13(7), 708. Retrieved from http://dx.doi.org/10.3390/educsci13070708
Kaur, S., Jain, T., & Kaur, P. (2023). Effect of COVID 19 on mental health: A bibliometric analysis using scopus database. International Journal of Multidisciplinary Trends, 5(5), 26-45. doi: 10.22271/multi.2023.v5.i5a.289
Korchef, A., & Trabelsi, F. B. F. (2023). Chemistry journals and research trends in Arab countries: A bibliometric analysis. Arabian Journal of Chemistry, 105097-105097. doi: 10.1016/j.arabjc.2023.105097
Larisa, Ivanova. (2023). Health consequences and control of the use of information and communication technologies by children and adolescents: literature review. Социология медицины, 21(1):97-107. doi: 10.17816/socm109663
Lavis, A., & Winter, R. (2020). #Online harms or benefits? An ethnographic analysis of the positives and negatives of peer-support around self-harm on social media. Journal of child psychology and psychiatry, and allied disciplines, 61(8), 842–854. https://doi.org/10.1111/jcpp.13245
McGorry, P. D., Mei, C., Chanen, A., Hodges, C., Alvarez-Jimenez, M., & Killackey, E. (2022). Designing and scaling up integrated youth mental health care. World psychiatry : official journal of the World Psychiatric Association (WPA), 21(1), 61–76. https://doi.org/10.1002/wps.20938
Meštrović, A. (2018). Collaboration Networks Analysis: Combining Structural and Keyword-Based Approaches. Third International KEYSTONE Conference, IKC 2017, Gdańsk, Poland, September 11-12, 2017, Revised Selected Papers and COST Action IC1302 Reports. https://doi.org/10.1007/978-3-319-74497-1
Przybylski, A. K., & Weinstein, N. (2019). Digital Screen Time Limits and Young Children's Psychological Well-Being: Evidence From a Population-Based Study. Child development, 90(1), e56–e65. https://doi.org/10.1111/cdev.13007
Rahmah, M., & Hamdi, M. (2022). A Bibliometric Network Analysis of Collaboration in Covid-19 Handling. Proceedings of the International Conference on Communication, Policy and Social Science (InCCluSi 2022). doi: https://doi.org/10.2991/978-2-494069-07-7_5
Rickard, N., Arjmand, H. A., Bakker, D., & Seabrook, E. (2016). Development of a Mobile Phone App to Support Self-Monitoring of Emotional Well-Being: A Mental Health Digital Innovation. JMIR mental health, 3(4), e49. https://doi.org/10.2196/mental.6202
Scott, D. A., Valley, B., & Simecka, B. A. (2017). Mental health concerns in the digital age. International Journal of Mental Health and Addiction, 15(3), 604–613. https://doi.org/10.1007/s11469-016-9684-0
Smith, K. A., Blease, C., Faurholt-Jepsen, M., Firth, J., van Daele, T., Moreno, C., Carlbring, P., Ebner-Priemer, U. W., Koutsouleris, N., Riper, H., Mouchabac, S., Torous, J., & Cipriani, A. (2023). Digital mental health: challenges and next steps. BMJ mental health, 26(1), e300670. https://doi.org/10.1136/bmjment-2023-300670
Soesanto, H., & Handalani, R. T. (2023). Analisis Bibliometrik Tentang Tren Penelitian Mengenai Manajemen Pengetahuan Berdasarkan Afiliasi Penulis dari Indonesia. ANDRAGOGI: Jurnal Diklat Teknis Pendidikan Dan Keagamaan, 11(1), 1-10.
Stubbemann, M., & Stumme, G. (2022). LG4AV: Combining Language Models and Graph Neural Networks for Author Verification. Advances in Intelligent Data Analysis XX: 20th International Symposium on Intelligent Data Analysis, IDA 2022, Rennes, France, April 20–22, 2022, Proceedings, 315-326. DOI: https://doi.org/10.1007/978-3-031-01333-1_25
Tracy, D., Gadelrab, R., Rahim, A., Pendlebury, G., Reza, H., Bhattacharya, R., Bachlani, A., Worlley, K., Rigby, D., Scott, J., & Dave, S. (2022). Digital literacy in contemporary mental healthcare: Electronic patient records, outcome measurements and social media. BJPsych Advances, 1-8. doi:10.1192/bja.2022.74
Uddin., M. J., & Aḥmad, S. (2023). Mapping of Technostress Research Trends: A Bibliometric Analysis. Conference: 2023 7th International Conference on Intelligent Computing and Control Systems (ICICCS), 938-943. doi: 10.1109/ICICCS56967.2023.10142487
van Jaarsveld, M. G. (2020). The Effects of COVID-19 Among the Elderly Population: A Case for Closing the Digital Divide. Frontiers in psychiatry, 11, 577427. doi: https://doi.org/10.3389/fpsyt.2020.577427
van Leeuwen, C., Jacobs, A., & Mariën, I. (2023). Catching the Digital Train on Time: Older Adults, Continuity, and Digital Inclusion. Social Inclusion, 11(3), 239-250. doi:https://doi.org/10.17645/si.v11i3.6723
Wahle, F., et al. (2016). Weidt S. Mobile Sensing and Support for People With Depression: A Pilot Trial in the Wild. JMIR Mental Health, 4(3). doi: 10.2196/mhealth.5960.
Watrianthos, R., Ambiyar, A., Rizal, F., Jalinus, N., & Waskito, W. (2022). Research on Vocational Education in Indonesia: A Bibliometric Analysis. JTEV (Jurnal Teknik Elektro Dan Vokasional), 8(2), 187-192.
Zeng, A., Fan, Y., Di, Z., Wang, Y., & Havlin, S. (2022). Impactful scientists have higher tendency to involve collaborators in new topics. Proceedings of the National Academy of Sciences of the United States of America, 119(33) doi: 10.1073/pnas.2207436119
Zhou, J., Song, D., Ma, J., Zhang, G., Wu, C., Chen, Q., & Zeng, L. (2023). Research trends in the mental health and multimorbidity of older people from 2002 to 2022: A bibliometric analysis via CiteSpace. Frontiers in psychiatry, 14, 1117554. https://doi.org/10.3389/fpsyt.2023.1117554
Zupic, I., & Cater, T. (2015). Bibliometric methods in management and organization. Organizational Research Methods, 18(3),429–472
Zsila, Á., & Reyes, M.E.S. Pros & cons: impacts of social media on mental health. BMC Psychol 11, 201 (2023). https://doi.org/10.1186/s40359-023-01243-x
DOI: https://doi.org/10.37058/jkki.v21i1.14791
Refbacks
- There are currently no refbacks.
Jurnal Kesehatan Komunitas Indonesia is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.