Stabilization of Image Classification Accuracy in Hybrid Quantum-Classical Convolutional Neural Network with Ensemble Learning
Abstract
Full Text:
PDF (1-6)References
Q. Tang, Y. Liu, and H. Liu, “Medical image classification via multiscale representation learning,” Artif Intell Med, vol. 79, pp. 71–78, Jun. 2017, doi: 10.1016/j.artmed.2017.06.009.
H. Fujiyoshi, T. Hirakawa, and T. Yamashita, “Deep learning-based image recognition for autonomous driving,” IATSS Research, vol. 43, no. 4, pp. 244–252, Dec. 2019, doi: 10.1016/j.iatssr.2019.11.008.
W. Wei, T. Can, W. Xin, L. Yanhong, H. Yongle, and L. Ji, “Image Object Recognition via Deep Feature-Based Adaptive Joint Sparse Representation,” Comput Intell Neurosci, vol. 2019, pp. 1–9, Nov. 2019, doi: 10.1155/2019/8258275.
N. Nurtiwi, R. Ruliana, and Z. Rais, “Convolutional Neural Network (CNN) Method for Classification of Images by Age,” JINAV: Journal of Information and Visualization, vol. 3, no. 2, pp. 126–130, Dec. 2022, doi: 10.35877/454RI.jinav1481.
S. Pattanayak, Pro Deep Learning with TensorFlow. Berkeley, CA: Apress, 2017. doi: 10.1007/978-1-4842-3096-1.
N. Memon, H. Parikh, S. B. Patel, D. Patel, and V. D. Patel, “Automatic land cover classification of multi-resolution dualpol data using convolutional neural network (CNN),” Remote Sens Appl, vol. 22, p. 100491, Apr. 2021, doi: 10.1016/j.rsase.2021.100491.
M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer Verlag, 2014, pp. 818–833. doi: 10.1007/978-3-319-10590-1_53.
J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum, vol. 2, p. 79, Aug. 2018, doi: 10.22331/q-2018-08-06-79.
W. Li, P.-C. Chu, G.-Z. Liu, Y.-B. Tian, T.-H. Qiu, and S.-M. Wang, “An Image Classification Algorithm Based on Hybrid Quantum Classical Convolutional Neural Network,” Quantum Engineering, vol. 2022, pp. 1–9, Jul. 2022, doi: 10.1155/2022/5701479.
Y. Ma, N. Li, W. Zhang, S. Wang, and H. Ma, “Image encryption scheme based on alternate quantum walks and discrete cosine transform,” Opt Express, vol. 29, no. 18, p. 28338, Aug. 2021, doi: 10.1364/OE.431945.
H.-S. Zhong et al., “Quantum computational advantage using photons,” Science (1979), vol. 370, no. 6523, pp. 1460–1463, Dec. 2020, doi: 10.1126/science.abe8770.
K. Bharti et al., “Noisy intermediate-scale quantum algorithms,” Rev Mod Phys, vol. 94, no. 1, p. 015004, Feb. 2022, doi: 10.1103/RevModPhys.94.015004.
J. Liu, K. H. Lim, K. L. Wood, W. Huang, C. Guo, and H.-L. Huang, “Hybrid quantum-classical convolutional neural networks,” Sci China Phys Mech Astron, vol. 64, no. 9, p. 290311, Sep. 2021, doi: 10.1007/s11433-021-1734-3.
E. H. Houssein, Z. Abohashima, M. Elhoseny, and W. M. Mohamed, “Hybrid quantum-classical convolutional neural network model for COVID-19 prediction using chest X-ray images,” J Comput Des Eng, vol. 9, no. 2, pp. 343–363, Feb. 2022, doi: 10.1093/jcde/qwac003.
O. Sagi and L. Rokach, “Ensemble learning: A survey,” WIREs Data Mining and Knowledge Discovery, vol. 8, no. 4, Jul. 2018, doi: 10.1002/widm.1249.
G. I. Webb and Z. Zheng, “Multistrategy ensemble learning: reducing error by combining ensemble learning techniques,” IEEE Trans Knowl Data Eng, vol. 16, no. 8, pp. 980–991, Aug. 2004, doi: 10.1109/TKDE.2004.29.
R. Parthasarathy and R. T. Bhowmik, “Quantum Optical Convolutional Neural Network: A Novel Image Recognition Framework for Quantum Computing,” IEEE Access, vol. 9, pp. 103337–103346, 2021, doi: 10.1109/ACCESS.2021.3098775.
J. Guan, W. Fang, and M. Ying, “Robustness Verification of Quantum Classifiers,” 2021, pp. 151–174. doi: 10.1007/978-3-030-81685-8_7.
T. Hur, L. Kim, and D. K. Park, “Quantum convolutional neural network for classical data classification,” Quantum Mach Intell, vol. 4, no. 1, p. 3, Jun. 2022, doi: 10.1007/s42484-021-00061-x.
S. Oh, J. Choi, and J. Kim, “A Tutorial on Quantum Convolutional Neural Networks (QCNN),” Sep. 2020.
M. Henderson, S. Shakya, S. Pradhan, and T. Cook, “Quanvolutional neural networks: powering image recognition with quantum circuits,” Quantum Mach Intell, vol. 2, no. 1, p. 2, Jun. 2020, doi: 10.1007/s42484-020-00012-y.
J. Amin, M. Sharif, N. Gul, S. Kadry, and C. Chakraborty, “Quantum Machine Learning Architecture for COVID-19 Classification Based on Synthetic Data Generation Using Conditional Adversarial Neural Network,” Cognit Comput, vol. 14, no. 5, pp. 1677–1688, Sep. 2022, doi: 10.1007/s12559-021-09926-6.
Refbacks
- There are currently no refbacks.