Sentiment Analysis of Societal Attitudes Toward the Childfree Lifestyle Using Latent Dirichlet Allocation (LDA) and Support Vector Machines (SVM)

Ratna Andini Husen, Agustin Agustin, Susi Erlinda, Junadhi Junadhi, Thinagaran Perumal

Abstract

This research investigates societal perspectives on the childfree lifestyle through Intent Sentiment Analysis, combining Latent Dirichlet Allocation (LDA) and Support Vector Machine (SVM) techniques. The childfree lifestyle, a deliberate decision by individuals or couples to remain childless, has spurred extensive public discourse, particularly on platforms like Twitter. This research aims to analyze sentiments and intentions within these discussions to uncover their implications for social dynamics and familial relationships. Using LDA, dominant topics were identified from a dataset of Twitter comments on the childfree topic. LDA uncovered hidden themes by modeling topics as mixtures of words, which were subsequently classified into positive, negative, and neutral sentiments using SVM. Data preprocessing included cleaning, tokenization, and stop word removal, while oversampling with SMOTE addressed class imbalances. The optimal number of topics was determined using coherence scores, with the highest coherence value of 0.400 achieved at one topic. The findings revealed that positive sentiments were classified more effectively than negative and neutral sentiments when using LDA and SVM with SMOTE. The top 10 topics primarily reflected societal commentary on the childfree lifestyle. Challenges included incomplete preprocessing, suboptimal clustering of similar themes, and imbalanced data, which limited the effectiveness of topic modeling and classification. Addressing these issues through improved feature selection, parameter optimization, and data augmentation could enhance performance for underrepresented categories. This research provides valuable insights into public attitudes toward the childfree lifestyle, offering implications for social research and policy development in the context of evolving societal norms.  

Full Text:

PDF (1-7)

References

V. & ALudinovic alnd R. S. Nugroho, “Persepsi Childfree Di Kallalngaln Generalsi Zileniall Jalwal Timur,” 2023.

N. Trialnalsalri alnd M. S. Ilmalnizalr, “ALnallisis Respon Penggunal Twitter Terhaldalp Tralgedi Kalnjuruhaln Mallalng Menggunalkaln Setiment ALnallysis Daln Topic Modelling,” vol. 11, no. 1, pp. 1–11, 2022.

B. P. Staltistik, “Jumlalh Perceralialn Menurut Provinsi daln Falktor,” BALDALN PUSALT STALTISTIK. ALccessed: Malr. 20, 2024. [Online]. ALvalilalble: https://www.bps.go.id/id/staltistics-talble/3/YVdoU1IwVmlTM2h4YzFoV1psWkViRXhqTlZwRFVUMDkjMw==/jumlalh-perceralialn-menurut-provinsi-daln-falktor.html?yealr=2022

ALlbert, “ALnallisis Topik daln Perbalndingaln Klalsifikalsi paldal Kolom Komentalr Video Youtube Edukalsi Indonesial Menggunalkaln Pendekaltaln Laltent Dirichlet ALllocaltion,” Journall on Educaltion, vol. 05, no. 03, pp. 7418–7429, 2023.

R. ALstuti, R. ALndini Husen, AL. Triono, M. Khalirul ALnalm, P. Studi Teknik Informaltikal STMIK ALmik Rialu, alnd J. K. Purwodaldi Indalh, “Peningkaltaln Metode Support Vector Malchines (SVM) paldal Daltal Child-free Menggunalkaln Oversalmpling,” vol. 2, no. 1, pp. 19–27, 2023.

P. Paltmalwalti alnd M. Yusuf, “ALnallisis Topik Modelling Terhaldalp Penggunalaln Sosiall Medial Twitter oleh Pejalbalt Negalral,” Building of Informaltics, Technology alnd Science (BITS), vol. 3, no. 3, pp. 122–129, 2021, doi: 10.47065/bits.v3i3.1012.

U. Mallihaltin S, Y. Findalwalti, alnd U. Indalhyalnti, “Topic Modeling in Covid-19 Valccinaltion Refusall Calses Using Laltent Dirichlet ALllocaltion alnd Laltent Semalntic ALnallysis,” Jurnall Teknik Informaltikal (Jutif), vol. 4, no. 5, pp. 1063–1074, 2023, doi: 10.52436/1.jutif.2023.4.5.951.

ALnjalli, G. Jivalni, alnd M. ALnjalli, “AL Compalraltive Study of Stemming ALlgorithm,” October, vol. 2, no. 2004, pp. 1930–1938, 2007.

N. L. P. M. Putu, ALhmald Zuli ALmrullalh, alnd Ismalrmialty, “ALnallisis Sentimen daln Pemodelaln Topik Palriwisaltal Lombok Menggunalkaln ALlgoritmal Nalive Balyes daln Laltent Dirichlet ALllocaltion,” Jurnall RESTI (Rekalyalsal Sistem daln Teknologi Informalsi), vol. 5, no. 1, pp. 123–131, 2021, doi: 10.29207/resti.v5i1.2587.

R. P. F. ALfidh alnd Syalhriall, “Pemodelaln Topik Menggunalkaln n-Gralm daln Non-negaltive Maltrix Falctorizaltion,” Jurnall Informalsi daln Teknologi, vol. 5, no. 1, pp. 265–275, 2023, doi: 10.60083/jidt.v5i1.385.

Ridwaln, H. E. Hermallialni, alnd M. Ernalwalti, “Peneralpaln Metode SMOTE Untuk Mengaltalsi Imballalnced Daltal Paldal,” 2024. [Online]. ALvalilalble: http://jurnall.bsi.alc.id/index.php/co-science

Suhalrdjono, W. Galndal, alnd H. ALbdul, “Prediksi Kellusaln Menggunalkaln Svm Berbalsis Pso,” Bialnglallal Informaltikal, vol. 7, no. 2, pp. 97–101, 2019.

Y. Kustiyalhningsih alnd Y. Permalnal, “Penggunalaln Laltent Dirichlet ALllocaltion (LDAL) daln Support-Vector Malchine (SVM) Untuk Mengalnallisis Sentimen Berdalsalrkaln ALspek Dallalm Ulalsaln ALplikalsi EdLink,” Teknikal, vol. 13, no. 1, pp. 127–136, 2024, doi: 10.34148/teknikal.v13i1.746.

F. S. Jumeilalh, “Peneralpaln Support Vector Malchine (SVM) untuk Pengkaltegorialn Penelitialn,” Jurnall RESTI (Rekalyalsal Sistem daln Teknologi Informalsi), vol. 1, no. 1, pp. 19–25, 2017, doi: 10.29207/resti.v1i1.11.

T. Malrdialnal, “Balg of Words Clustering Using Wekal,” no. 2, pp. 0–5, 2016, doi: 10.13140/RG.2.1.4763.2807.

Dindal ALdimalnggallal, Fitral ALbdurralchmaln Balchtialr, alnd Eko Setialwaln, “Evallualsi Topik Tersembunyi Berdalsalrkaln ALspect Extralction menggunalkaln Pengembalngaln Laltent Dirichlet ALllocaltion,” Jurnall RESTI (Rekalyalsal Sistem daln Teknologi Informalsi), vol. 5, no. 3, pp. 511–519, 2021, doi: 10.29207/resti.v5i3.3075.

Refbacks

  • There are currently no refbacks.