A Comparative Analysis of Content-Based Filtering and TF-IDF Approaches for Enhancing Sports Recommendation Systems

Herimanto Herimanto, Kevin Samosir, Fastoria Ginting

Abstract

Sport is one of the important factors for someone to maintain or improve their health. There are many purposes for a person to exercise. However, many people still find it difficult to determine the relevant type of exercise according to their preferences. Recommendation systems are now an important element in human life to provide relevant recommendations to users. The purpose of this research is to develop a sports recommendation system that can provide accurate types of sports recommendations to users and describe how the recommendation system can work in providing recommendations when cold-start problems and non-cold-start problems occur. The method used in this research is content-based filtering by applying Term Frequency - Inverse Document Frequency (TF-IDF) vectorization matrix and cosine similarity algorithm. When a new user logs in, the system first checks the user's preferences to determine whether a cold-start problem or non-cold-start problem occurs. When a cold-start problem occurs, TF-IDF will be used in providing recommendations to the user. Conversely, when a non-cold-start problem occurs, cosine similarity will be used. The results show that by using TF-IDF and cosine similarity, the system successfully provides relevant sports recommendations to users in both cold-start problem and non cold-start problem situations with an accuracy rate of 86.90%. The novelty of this research lies in the understanding of sports provided to users through sports-related journals. Through these journals, it can increase user satisfaction, trust, compliance, and educate users in running sports

Full Text:

PDF (90-97)

References

D. Z. S. Santosa Giriwijoyo, Hamidie Ronald Daniel Ray, Kesehatan, Olahraga dan Kinerja. 2020.

M. Fajriansyah, P. P. Adikara, and A. W. Widodo, “Sistem Rekomendasi Film Menggunakan Content Based Filtering,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 6, pp. 2188–2199, 2021, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/9163.

D. A. Putri, D. Pramesti, D. I, and W. Santiyasa, “Penerapan Metode Content-Based Filtering dalam Sistem Rekomendasi Video Game,” Jnatia, vol. 1, no. 1, pp. 229–234, 2022.

A. E. Yudi Setiawan, Angga Nurwanto, “Implementasi Item Based Collaborative Filtering Dalam Pemberian Rekomendasi Agenda Wisata Berbasis Android,” vol. VI Nomor 1, p. 8, 2019, [Online]. Available: https://ejournal.unib.ac.id/pseudocode/article/view/7326/3628.

Y. I. Lubis, D. J. Napitupulu, and A. S. Dharma, “Implementasi Metode Hybrid Filtering (Collaborative dan Content-based) untuk Sistem Rekomendasi Pariwisata,” Dep. Tek. Elektro dan Teknol. Informasi, FT UGM, pp. 28–35, 2020.

F. Mansur, V. Patel, and M. Patel, “A review on recommender systems,” Proc. 2017 Int. Conf. Innov. Information, Embed. Commun. Syst. ICIIECS 2017, vol. 2018-Janua, no. 1, pp. 1–6, 2018, doi: 10.1109/ICIIECS.2017.8276182.

A. A. Huda, R. Fajarudin, and A. Hadinegoro, “Sistem Rekomendasi Content-based Filtering Menggunakan TF-IDF Vector Similarity Untuk Rekomendasi Artikel Berita,” Build. Informatics, Technol. Sci., vol. 4, no. 3, pp. 1679–1686, 2022, doi: 10.47065/bits.v4i3.2511.

N. Mishra, S. Chaturvedi, A. Vij, and S. Tripathi, “Research problems in recommender systems,” J. Phys. Conf. Ser., vol. 1717, no. 1, 2021, doi: 10.1088/1742-6596/1717/1/012002.

D. Jannach and G. Adomavicius, “Recommendations with a purpose,” RecSys 2016 - Proc. 10th ACM Conf. Recomm. Syst., pp. 7–10, 2016, doi: 10.1145/2959100.2959186.

Hanafi, N. Suryana, and A. S. B. H. Basari, “An understanding and approach solution for cold start problem associated with recommender system: A literature review,” J. Theor. Appl. Inf. Technol., vol. 96, no. 9, pp. 2677–2695, 2018.

M. Elahi, “Cold Start Solutions For Recommendation Systems Music recommender systems View project EXTRA: EXpertise-Boosted Model for Trust-Based Recommendation System Based on Supervised Random Walk View project,” no. April, 2019, doi: 10.13140/RG.2.2.27407.02725.

P. N. Raharjo, A. Handojo, and H. Juwiantho, “Sistem Rekomendasi Content Based Filtering Pekerjaan dan Tenaga Kerja Potensial menggunakan Cosine Similarity,” J. Invra, vol. 10, no. 2, pp. 1–6, 2022.

F. Ramadhan and A. Musdholifah, “Online Learning Video Recommendation System Based on Course and Sylabus Using Content-Based Filtering,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 15, no. 3, p. 265, 2021, doi: 10.22146/ijccs.65623.

R. Van Meteren and M. Van Someren, “Using Content-Based Filtering for Recommendation,” ECML/MLNET Work. Mach. Learn. New Inf. Age, pp. 47–56, 2000, [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.25.5743&rep=rep1&type=pdf.

R. H. Mondi, A. Wijayanto, and Winarno, “Recommendation System with Content-based Filtering Method for Culinary Tourism in Mangan Application,” ITSMART J. Ilm. Teknol. dan Inf., vol. 8, no. 2, pp. 65–72, 2019.

D. Septiani and I. Isabela, “Analisis Term Frequency Inverse Document Frequency (Tf-Idf) Dalam Temu Kembali Informasi Pada Dokumen Teks,” SINTESIA J. Sist. dan Teknol. Inf. Indones., vol. 1, no. 2, pp. 81–88, 2022.

A. Hiro, J. Permana, and A. T. Wibowo, “Movie Recommendation System Based on Synopsis Using Content-Based Filtering with TF-IDF and Cosine Similarity,” vol. 9, no. 2, pp. 1–14, 2023, doi: 10.21108/ijoict.v9i2.747.

M. S. Negara and A. Zafrullah, “IMPLEMENTASI MACHINE LEARNING DENGAN METODE COLLABORATIVE FILTERING DAN CONTENT-BASED FILTERING PADA APLIKASI MOBILE TRAVEL (BANGKIT ACADEMY) (Implementation of Machine Learning with Collaborative Filtering and Content-Based Filtering Methods in Mobile Tr,” vol. 5, no. 1, pp. 126–136, 2024.

R. Priskila, Nova Noor Kamala Sari, and Putu Bagus Adidyana Anugrah Putra, “Implementasi Content-Based Filtering Menggunakan Tf-Idf and Cosine Similarity Untuk Sistem Rekomendasi Resep Masakan,” J. Teknol. Inf. J. Keilmuan dan Apl. Bid. Tek. Inform., vol. 18, no. 1, pp. 43–51, 2024, doi: 10.47111/jti.v18i1.12543.

W. G. S. Parwita, “Pengujian Akurasi Sistem Rekomendasi Berbasis Content-Based Filtering,” Inform. Mulawarman J. Ilm. Ilmu Komput., vol. 14, no. 1, p. 27, 2019, doi: 10.30872/jim.v14i1.1272.

M. Yin, J. W. Vaughan, and H. Wallach, “Understanding the effect of accuracy on trust in machine learning models,” Conf. Hum. Factors Comput. Syst. - Proc., pp. 1–12, 2019, doi: 10.1145/3290605.3300509

Refbacks

  • There are currently no refbacks.