Enhancing Maintenance Efficiency Through K-Means Clustering at PT Semen Indonesia
Abstract
PT Semen Indonesia, an industrial company based in Gresik, East Java, is committed to enhancing operational efficiency and managing maintenance costs effectively. By analyzing patterns in maintenance frequency, total costs, and maintenance duration across their various plants, the company can identify work units that require more intensive attention or that can be optimized for greater efficiency. To achieve this, PT Semen Indonesia employs K-Means clustering analysis to gain deeper insights into the maintenance data, identifying patterns that can help improve operational efficiency and develop more targeted maintenance strategies based on the identified clusters. The clustering of planner groups is carried out using variables such as the number of maintenance activities, total costs, and duration of maintenance tasks. As a result of the K-Means clustering, the planner groups have been divided into two clusters: Cluster 1, which consists of planner groups that perform more efficiently, and Cluster 2, which includes those with less efficient performance. Based on these clustering results, PT Semen Indonesia should conduct further evaluation or review of the planner groups in Cluster 2.
Full Text:
PDF (73-80)References
S. S. Rudiantara, S. Umar, A. A. Idat, A. P. Bhakt, L. S. Djama, A. P. Adi, “Pedoman Tata Kelola Perusahaan yang Baik (GCG Code),” 2022.
B. S. Gandhare and M. M. Akarte, “Benchmarking maintenance performance in select agro-based industry,” J. Qual. Maint. Eng., vol. 28, no. 2, pp. 296–326, 2022.
P. Macnico, J. Christini, N. Sandra, Y. Nuraeni, N. B. Laulita, and F. Cuandra, “Analisa Implementasi Manajemen Rantai Pasok Berbasis Erp Pada Sistem Distribusi Pt Semen Indonesia Tbk,” Transekonomika Akuntansi, Bisnis Dan Keuang., vol. 2, no. 3, pp. 145–164, 2022.
V. UpendraReddya and S. J. J. Thangarajb, “Prediction of Likely Customers for Car Industries Using K-Means Clustering Compared with Logistic Regression,” Adv. Parallel Comput. Algorithms, Tools Paradig., vol. 41, p. 225, 2022.
E. A. Saputra and Y. Nataliani, “Analisis Pengelompokan Data Nilai Siswa untuk Menentukan Siswa Berprestasi Menggunakan Metode Clustering K-Means,” J. Inf. Syst. Informatics, vol. 3, no. 3, pp. 424–439, 2021.
S. S. Aripin, I. Imlakiyah, and Y. Suharyat, “Transformasi Organisasi di Era Society 5.0: Inovasi, Adaptasi, dan Keterlibatan Manusia dalam Revolusi Teknologi,” NUSRA J. Penelit. dan Ilmu Pendidik., vol. 5, no. 1, pp. 37–44, 2024.
GeeksforGeeks, “Data Mining – Cluster Analysis.” https://www.geeksforgeeks.org/data-mining-cluster-analysis/ (accessed Feb. 01, 2023).
MySkill Blog, “Mengenal Clustering: Pengertian, Manfaat, Metode, Contoh & Syarat.” https://blog.myskill.id/istilah-dan-tutorial/clustering-cara-mengelompokkan-data-untuk-memahami-pola/ (accessed Oct. 30, 2023).
A. E. Ezugwu et al., “A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects,” Eng. Appl. Artif. Intell., vol. 110, p. 104743, 2022.
H. Shu et al., “Density-based clustering for bivariate-flow data,” Int. J. Geogr. Inf. Sci., vol. 36, no. 9, pp. 1809–1829, 2022.
A. E. Satriatama et al., “Analisis Klaster Data Pasien Diabetes untuk Identifikasi Pola dan Karakteristik Pasien,” J. Teknol. Dan Sist. Inf. Bisnis, vol. 5, no. 3, pp. 172–182, 2023.
P. A. Ariawan, “Optimasi pengelompokan data pada metode K-means dengan analisis outlier,” J. Nas. Teknol. dan Sist. Inf, vol. 5, no. 2, pp. 88–95, 2019.
M. Ahmed, R. Seraj, and S. M. S. Islam, “The k-means algorithm: A comprehensive survey and performance evaluation,” Electronics, vol. 9, no. 8, p. 1295, 2020.
A. M. Ikotun, A. E. Ezugwu, L. Abualigah, B. Abuhaija, and J. Heming, “K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data,” Inf. Sci. (Ny)., vol. 622, pp. 178–210, 2023.
S. Regina, E. Sutinah, and N. Agustina, “Clustering Kualitas Kinerja Karyawan Pada Perusahaan Bahan Kimia Menggunakan Algoritma K-Means,” J. Media Inform. Budidarma, vol. 5, no. 2, pp. 573–582, 2021.
M. Gul and M. A. Rehman, “Big data: an optimized approach for cluster initialization,” J. Big Data, vol. 10, no. 1, p. 120, 2023.
T. C. Kit, N. Firdaus, and M. Azmi, “Customer profiling for Malaysia online retail industry using K-Means clustering and RM model,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 1, pp. 106–113, 2021.
I. Chahid, A. K. Elmiad, and M. Badaoui, “Data Preprocessing For Machine Learning Applications in Healthcare: A Review,” in 2023 14th International Conference on Intelligent Systems: Theories and Applications (SITA), 2023, pp. 1–6.
A. N. Alifah, H. N. Fadhilah, and T. M. Sianipar, “Klasterisasi KabupatenKota di Jawa Barat Berdasarkan Tingkat Kenyamanan dengan Metode K-Means Clustering,” in PROSIDING SEMINAR NASIONAL SAINS DATA, 2022, vol. 2, no. 1, pp. 30–38.
K. P. Sinaga, I. Hussain, and M.-S. Yang, “Entropy K-means clustering with feature reduction under unknown number of clusters,” Ieee Access, vol. 9, pp. 67736–67751, 2021.
A. Mazarei, R. Sousa, J. Mendes-Moreira, S. Molchanov, and H. M. Ferreira, “Online boxplot derived outlier detection,” Int. J. Data Sci. Anal., pp. 1–15, 2024.
W. A. Prastyabudi, A. N. Alifah, and A. Nurdin, “Segmenting the Higher Education Market: An Analysis of Admissions Data Using K-Means Clustering,” Procedia Comput. Sci., vol. 234, pp. 96–105, 2024.
C. Shi, B. Wei, S. Wei, W. Wang, H. Liu, and J. Liu, “A quantitative discriminant method of elbow point for the optimal number of clusters in clustering algorithm,” EURASIP J. Wirel. Commun. Netw., vol. 2021, pp. 1–16, 2021.
Y. Januzaj, E. Beqiri, and A. Luma, “Determining the Optimal Number of Clusters using Silhouette Score as a Data Mining Technique.,” Int. J. Online Biomed. Eng., vol. 19, no. 4, 2023.
J. Han, J. Pei, and H. Tong, Data mining: concepts and techniques. Morgan kaufmann, 2022.
Refbacks
- There are currently no refbacks.