Text Mining-Based Sentiment Analysis of ChatGPT Users on X Platform Using Naïve Bayes Algorithm

Chaerulsyah Alkamal, Dede Kurniadi

Abstract


ChatGPT (Generative Pre-trained Transformer) is a natural language processing model based on Artificial Intelligence (AI) that is currently trending. ChatGPT is widely used by the public because it is considered very helpful in completing tasks or solving problems faced by society. However, as the use of ChatGPT grows, questions have arisen about how people perceive and respond to interactions with ChatGPT present. The use of ChatGPT not only creates opportunities but also new challenges in understanding user perceptions and sentiments toward this technology. For example, various controversies have emerged regarding the presence of ChatGPT. Therefore, this research aims to determine the sentiments of society, particularly among users of social media X, toward ChatGPT, and whether most of society views it positively, negatively, or neutrally. By conducting sentiment analysis and implementing Text Mining, the tendency of a particular sentiment or opinion, whether it leans toward positive, negative, or neutral, can be obtained relatively easily. The method used in this research is SEMMA (Sample, Explore, Modify, Model, Assess) with Naïve Bayes as the algorithm to be implemented. To evaluate the model, a Confusion Matrix is used. The sentiment analysis results show that out of a total of 1,314 data points, 39.4% were positive, 37.7% were neutral, and 22.9% were negative. The classification model achieved an accuracy of 72.78%, which is considered quite good.

Full Text:

PDF (62-68)

References


D. Setiawan, E. Ayu Dewi Karuniawati, S. Imelda Janty, and P. Bintan Cakrawala, “Peran Chat Gpt (Generative Pre-Training Transformer) Dalam Implementasi Ditinjau Dari Dataset,” Innovative: Journal Of Social Science Research, vol. 3, no. 3, pp. 9527–9539, 2023.

W. Suharmawan, “Pemanfaatan Chat GPT dalam dunia pendidikan,” Education Journal : Journal Educational Research and Development, vol. 7, no. 2, 2023, doi: 10.31537/ej.v7i2.1248.

Misnawati Misnawati, “ChatGPT: Keuntungan, Risiko, Dan Penggunaan Bijak Dalam Era Kecerdasan Buatan,” Prosiding Seminar Nasional Pendidikan, Bahasa, Sastra, Seni, Dan Budaya, vol. 2, no. 1, pp. 54–67, Apr. 2023, doi: 10.55606/mateandrau.v2i1.221.

T. U. S. H. Wibowo, F. Akbar, S. R. Ilham, and M. S. Fauzan, “Tantangan dan Peluang Penggunaan Aplikasi Chat GPT Dalam Pelaksanaan Pembelajaran Sejarah Berbasis Dimensi 5.0,” JURNAL PETISI (Pendidikan Teknologi Informasi), vol. 4, no. 2, pp. 69–76, Jul. 2023, doi: 10.36232/jurnalpetisi.v4i2.4226.

S. Kemp, “DIGITAL 2024: INDONESIA,” DATAREPORTAL. Accessed: Mar. 17, 2024. [Online]. Available: https://datareportal.com/reports/digital-2024-indonesia

R. Parlika, S. Ilham Pradika, A. M. Hakim, and R. N. M. Kholilul, “Analisis Sentimen Twitter Terhadap Bitcoin dan Cryptocurrency Berbasis Python TextBlob,” Jurnal Ilmiah Teknologi Informasi dan Robotika, vol. 2, pp. 33–37, Dec. 2020, Accessed: Sep. 03, 2023. [Online]. Available: https://scholar.archive.org/work/4klvx7lt5ndbhhovnaol4exyym/access/wayback/http://jifti.upnjatim.ac.id/index.php/jifti/article/download/22/24

D. Alita and A. Isnain, “Pendeteksian Sarkasme pada Proses Analisis Sentimen Menggunakan Random Forest Classifier,” Jurnal Komputasi, vol. 8, no. 2, Oct. 2020, doi: 10.23960/komputasi.v8i2.2615.

A. Z. Amrullah, A. Sofyan Anas, M. Adrian, and J. Hidayat, “Analisis Sentimen Movie Review Menggunakan Naive Bayes Classifier Dengan Seleksi Fitur Chi Square,” Jurnal Bumigora Information Technology (BITe), vol. 2, no. 1, pp. 40–44, Jul. 2020, doi: 10.30812/bite.v2i1.804.

S. Sukriadi, I. Ismail, and A. M. Andzar, “Penerapan Text Mining Dalam Klasifikasi Judul Skripsi Yang Diusulkan Mahasiswa Menggunakan Metode Naïve Bayes,” Jurnal Ilmiah Sistem Informasi Dan Teknik Informatika (JISTI), vol. 6, no. 2, pp. 184–196, 2023, doi: 10.57093/jisti.v6i2.174.

T. Darwansyah and I. Mansyur, “Implementasi Algoritma Text Mining dan Cosine Similarity untuk Desain Sistem Aspirasi Publik Berbasis Mobile,” Komputika Jurnal Sistem Komputer, vol. 9, no. 2, pp. 169–176, 2022, doi: 10.34010/komputika.v11i2.6501.

A. Firdaus and W. Firdaus, “Text Mining Dan Pola Algoritma Dalam Penyelesaian Masalah Informasi:(Sebuah Ulasan),” Jurnal Penelitian Ilmu dan Teknologi Komputer (JUPITER), vol. 13, no. 1, p. 66, Apr. 2021, Accessed: Sep. 04, 2023. [Online]. Available: https://jurnal.polsri.ac.id/index.php/jupiter/article/view/3249

I. T. Julianto, D. Kurniadi, M. R. Nashrulloh, A. Mulyani, and J. I. Komputer, “Twitter Social Media Sentiment Analysis Against Bitcoin Cryptocurrency Trends Using Rapidminer,” Jurnal Teknik Informatika (JUTIF), vol. 3, no. 3, 2022, doi: 10.20884/1.jutif.2022.3.3.343.

I. T. Julianto, D. Kurniadi, M. R. Nashrulloh, and A. Mulyani, “Comparison of Classification Algorithm and Feature Selection in Bitcoin Sentiment Analysis,” Jurnal Teknik Informatika (Jutif), vol. 3, no. 3, pp. 739–744, Jun. 2022, doi: 10.20884/1.jutif.2022.3.3.343.

C. F. Hasri and D. Alita, “Penerapan Metode Naïve Bayes Classifier Dan Support Vector Machine Pada Analisis Sentimen Terhadap Dampak Virus Corona Di Twitter,” Jurnal Informatika dan Rekayasa Perangkat Lunak, vol. 3, no. 2, pp. 145–160, 2022.

D. Darwis, N. Siskawati, and Z. Abidin, “Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Review Data Twitter Bmkg Nasional,” Jurnal Tekno Kompak, vol. 15, no. 1, pp. 131–145, 2021.

D. D. Putri, G. F. Nama, and W. E. Sulistiono, “Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) Pada Twitter Menggunakan Metode Naive Bayes Classifier,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 10, no. 1, pp. 34–40, 2022.

Medika Risnasari, Konsep Dasar Data Mining Teori dan Praktik dengan Python. Malang: CV. Literasi Nusantara Abadi, 2022.

Junadhi, Agustin, M. Rifqi, and M. K. Anam, “Sentiment Analysis of Online Lectures using K-Nearest Neighbors based on Feature Selection,” Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), vol. 11, no. 3, pp. 216–225, Dec. 2022, doi: 10.23887/janapati.v11i3.51531.

D. S. Utami and A. Erfina, “ANALISIS SENTIMEN PINJAMAN ONLINE DI TWITTER MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE (SVM),” in SISMATIK (Seminar Nasional Sistem Informasi dan Manajemen Informatika), Aug. 2021, pp. 299–305.

J. Sangeetha and U. Kumaran, “A hybrid optimization algorithm using BiLSTM structure for sentiment analysis,” Measurement: Sensors, vol. 25, p. 100619, Feb. 2023, doi: 10.1016/j.measen.2022.100619.

M. L. K. Harsono, Y. Alkhalifi, N. Nurajijah, and W. Gata, “Analisis Sentimen Stakeholder Atas Layanan HAIDJPB pada Media Sosial Twitter dengan Menggunakan Metode Support Vector Machine dan Naïve Bayes,” Infoman’s, vol. 14, no. 1, 2020, doi: 10.33481/infomans.v14i1.126.

Y. B. Widodo, S. A. Anggraeini, and T. Sutabri, “Perancangan Sistem Pakar Diagnosis Penyakit Diabetes Berbasis Web Menggunakan Algoritma Naive Bayes,” Jurnal Teknologi Informatika dan Komputer, vol. 7, no. 1, pp. 112–123, Mar. 2021, doi: 10.37012/jtik.v7i1.507.

L. Affandi, A. N. Pramudhita, and M. P. Sasmita, “Sistem Pakar Klasifikasi Kecanduan Gadget Menggunakan Teori Arthurt T. Hovart Dengan Metode Naive Bayes Classifier Untuk Anak Sekolah Dasar,” in Seminar Informatika Aplikatif Polinema (SIAP), Malang, Aug. 2020, pp. 102–106.

D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” Jurnal Sains Komputer & Informatika, vol. 5, no. 2, pp. 697–711, 2021, Accessed: Apr. 20, 2024. [Online]. Available: http://ejurnal.tunasbangsa.ac.id/index.php/jsakti/article/view/369

N. G. A. Dasriani, L. A. G. Pariandi, and I. M. Y. Dharma, “Analisis Sentimen Program Jaminan Kesehatan Nasional Menggunakan Multiclass Support Vector Machine,” BIOS : Jurnal Teknologi Informasi dan Rekayasa Komputer, vol. 6, no. 1, pp. 20–30, Nov. 2024, doi: 10.37148/bios.v6i1.136.




DOI: https://doi.org/10.37058/jaisi.v3i2.17062

Refbacks

  • There are currently no refbacks.


International Journal of Applied Information Systems and Informatics (JAISI)
Department of Information Systems, Faculty of Engineering, Siliwangi University Tasikmalaya
email: jaisi@unsil.ac.id

Jalan Siliwangi No. 24 Kelurahan Kahuripan Kecamatan Tawang Kota Tasikmalaya 46115

This work is licenced under a Creative Commons Attribution 4.0 International Licence