Analysis Of Twitter User Sentiment To Tiktok Shop Using Naïve Bayes And Decision Tree Algorithms

Soleh Jafar Sidiq, Andi Nur Rachman

Abstract


The growth of internet users is fantastic, before the pandemic the figure was only 175 million. While the latest data from the Asosiasi Penyelenggaraan Jasa Internet Indonesia (APJII), in 2022 internet users in Indonesia will reach around 210 million. One of the influences on the increasing number of internet users in Indonesia is the increasing number of buying and selling activities through internet media. At this time there are various kinds of e-commerce applications. One of the latest e-commerce in Indonesia is Tiktok Shop. Tiktok shop is a new feature of the Tiktok application which was established on April 17, 2021. The development of Tiktok shop cannot be separated from the people who use this feature. Many people give opinions about Tiktok Shop on one of the social media, namely Twitter. Twitter is a place to get data expressed by the public through tweets posted to the timeline. The data used are tweets in Indonesian with a dataset of 1000 tweets. The data is then processed to be analyzed for knowledge. The analysis is done with Naïve Bayes and Decision Tree methods. The accuracy results of the Naïve Bayes algorithm are 90% and the Decision tree algorithm is 93%, so the Decision Tree algorithm is better for classifying sentiment analysis of twitter users towards Tiktok Shop with a data division of 90%. 

Full Text:

PDF 8-14

References


Anam, M. K., Pikir, B. N., & Firdaus, M. B. (2021). Penerapan Na ̈Ive Bayes Classifier, K-Nearest Neighbor (Knn) Dan Decision Tree Untuk Menganalisis Sentimen Pada Interaksi Netizen Danpemeritah. Matrik : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 21(1), 139–150. Https://Doi.Org/10.30812/Matrik.V21i1.1092

Devita, R. N., Herwanto, H. W., & Wibawa, A. P. (2018). Perbandingan Kinerja Metode Naive Bayes Dan K-Nearest Neighbor Untuk Klasifikasi Artikel Berbahasa Indonesia. Jurnal Teknologi Informasi Dan Ilmu Komputer, 5(4), 427. Https://Doi.Org/10.25126/Jtiik.201854773.

Dragut, E., Fang, F., Sistla, P., Yu, C., & Meng, W. (2009). Stop Word And Related Problems In Web Interface Integration. Proceedings Of The Vldb Endowment, 2(1), 349–360. Https://Doi.Org/10.14778/1687627.1687667.

Efendi, Z. (2018). Analisis Opini Masyarakat Terhadap Jasa Transportasi Online Menggunakan Text Mining Classification Pada Twitter. Uin Suska Riau.

Efendi, Z., & Mustakim. (2017). Text Mining Classification Sebagai Rekomendasi Dosen Pembimbing Tugas Akhir Program Studi Sistem Informasi. (Hal. 138–143). Seminar Nasional Teknologi Informasi, Komunikasi Dan Industri (Sntiki)

Ernamia, E. M. A., & Herliana, A. (2022). Analisis Sentimen Kuliah Daring Dengan Algoritma Naïve Bayes, K-Nn Dan Decision Tree. Jurnal Responsif : Riset Sains Dan Informatika, 4(1), 70–80. Https://Doi.Org/10.51977/Jti.V4i1.614.

Faizal, M. R. (2016). Seni Belajar Pemrograman Supervised Learning Dengan R. Indc Indonesia.

Hozairi, H., Anwari, A., & Alim, S. (2021). Implementasi Orange Data Mining Untuk Klasifikasi Kelulusan Mahasiswa Dengan Model K-Nearest Neighbor, Decision Tree Serta Naive Bayes. Network Engineering Research Operation, 6(2), 133. Https://Doi.Org/10.21107/Nero.V6i2.237.

Jati, B. D. (2020). Naskah Publikasi Analisis Sentimen Produk Iphone Menggunakan Naive Bayes Classifier.

Jogiyanto, H. . (2015). Analisa Dan Desain Sistem Informasi: Pendekatan Terstruktur Teori Dan Praktik Aplikasi Bisnis. Andi.

Jtik, J., Teknologi, J., Putra, T. W., & Triayudi, A. (2022). Analisis Sentimen Pembelajaran Daring Menggunakan Metode Naïve Bayes , Knn , Dan Decision Tree. 6(1).

Liu, B. (2010). Sentiment Analysis And Subjectivity. Handbook Of Natural Language Processing, Second Edition, 627–666.

Mujahidin, S., Prasetio, B., & Utomo, M. C. C. (2022). Implementasi Analisis Sentimen Masyarakat Mengenai Kenaikan Harga Bbm Pada Komentar Youtube Dengan Metode Gaussian Naïve Bayes. Voteteknika (Vocational Teknik Elektronika Dan Informatika), 10(3), 17. Https://Doi.Org/10.24036/Voteteknika.V10i3.118299

Nafalski, A., & Wibawa, A. P. (2016). Machine Translation With Javanese Speech Levels’ Classification. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska.

Ng, A. (2017). Machine Learning Yearning. Url: Http://Www. Mlyearning. Org/(96).

Nuansa, E. P. (2017). Analsis Sentimen Pengguna Twitter Terhadap Pemilihan Gubernur Dki Jakarta Dengan Metode Naïve Bayesian Classification Dan Support Vector Machine.

Of, A., Social, T., Sentiment, M., The, O. N., Reaction, P. S., The, T. O., Of, D., Creation, J. O. B., Using, L. A. W., Classification, T. H. E., & Naive, M. (2021). Analisis Sentimen Media Sosial Twitter Terhadap Reaksi Masyarakat Naive Bayes Analysis Of Twitter Social Media Sentiment On The Public ’ S Reaction To The Drafts Of Job Creation Law Using The Classification Method Naive Bayes. 8(5), 9007–9016.

Prasetyo, E. (2014). Data Mining Mengolah Data Menjadi Informasi Menggunakan Matlab. Cv. Andi.

Ramadhan, M. A., & Wahyudin, M. I. (2022). Analisis Sentimen Mengenai Keberhasilan Indonesia Di Ajang Thomas Cup 2020 (Studi Kasus Media Sosial Twitter) Menggunakan Metode Naïve Bayes Dan Decision Tree. Jurnal Jtik (Jurnal Teknologi Informasi Dan Komunikasi), 6(4), 505–511. Https://Doi.Org/10.35870/Jtik.V6i4.560.

Reynaldhi, M. A. R., & Sibaroni, Y. (2021). Analisis Sentimen Review Film Pada Twitter Menggunakan Metode Klasifikasi Hybrid Naïve Bayes Dan Decision Tree. E-Proceeding Of Engineering, 8(5), 10127–10137.

Rozaq, A., Yunitasari, Y., Sussolaikah, K., Sari, E. R. N., & Syahputra, R. I. (2022). Analisis Sentimen Terhadap Implementasi Program Merdeka Belajar Kampus Merdeka Menggunakan Naïve Bayes, K-Nearest Neighboars Dan Decision Tree. Jurnal Media Informatika Budidarma, 6(2), 746. Https://Doi.Org/10.30865/Mib.V6i2.3554.

Salmon Pattiiha, F. (2022). Perbandingan Metode K-Nn, Naïve Bayes, Decision Tree Untuk Analisis Sentimen Tweet Twitter Terkait Opini Terhadap Pt Pal Indonesia. Jurnal Riset Komputer), 9(2), 2407–389. Https://Doi.Org/10.30865/Jurikom.V9i2.4016.

Schneider, K.-M. (2005). Techniques For Improving The Performance Of Naive Bayes For Text Classification. International Conference On Intelligent Text Processing And Computational Linguistics, 682–693.

Sutopo. (2018). Penentuan Jumlah Sampel Dalam Penelitian. Http://Ejurnal.Stiedharmaputra-Smg.Ac.Id/Index.Php/Jema/Article/Download/156/128.

Tri Romadloni, N., Santoso, I., & Budilaksono, S. (2019). Perbandingan Metode Naive Bayes, Knn Dan Decision Tree Terhadap Analisis Sentimen Transportasi Krl Commuter Line. Jurnal Ikra-Ith Informatika, 3(2), 1–9.

Tuffery, S. (2011). Data Mining And Statistic For Decision Making. John Wiley And Sons, Ltd.

Weiss, S. M. (2010). Text Mining: Predictive Methods For Analyzing Unstructured Information. Springer.

Yulian, E. (2018). Text Mining Dengan K-Means Clustering Pada Tema Lgbt Dalam Arsip Tweet Masyarakat Kota Bandung. 04(01), 27. Matematika “Mantik”

Zhang, D., Liu, W., Gong, X., & Jin, H. (2011). A Novel Improved Smote Resampling Algorithm Based On Fractal. Journal Of Computational Information Systems, 7(6), 2204–2211.




DOI: https://doi.org/10.37058/jaisi.v1i1.8990

Refbacks

  • There are currently no refbacks.


International Journal of Applied Information Systems and Informatics (JAISI)
Department of Information Systems, Faculty of Engineering, Siliwangi University Tasikmalaya
email: jaisi@unsil.ac.id

Jalan Siliwangi No. 24 Kelurahan Kahuripan Kecamatan Tawang Kota Tasikmalaya 46115

This work is licenced under a Creative Commons Attribution 4.0 International Licence