Implementation of the Naive Bayes Classifier for Sentiment Analysis of Shopee E-Commerce Application Review Data on the Google Play Store

Adilia Tri Rizkya, Rianto Rianto, Acep Irham Gufroni

Abstract


E-commerce in Indonesia is growing very quickly every year. The Ministry of Communication and Information (KEMKOMINFO) stated that Indonesia is the 10th largest e-commerce growth country with score 78%. One of the effects from increasing number of internet users in Indonesia is the mushrooming of shopping activities through internet media. This causes internet users want everything that instant and easy. Knowing this, most business people use it to market their products, especially in the field of goods and services. As it grows, e-commerce becomes easier to use and download. One example of an e-commerce application that is in great demand is Shopee and can be downloaded via the Google Play Store. Google Play Store has a review feature which contains user comments about the downloaded apps. Sentiment analysis is carried out to extract information related to Shopee E-commerce. The Naïve Bayes Classifier algorithm is suitable for use in sentiment analysis because this algorithm is purposeful as a classification method into positive and negative categories. The data was used from November 2022 to January 2023. From a total of 4902 review data obtained, after going through preprocessing, translation and then classification, the total data is obtained that is 4849 review data. From the data obtained it is classified 2348 positive reviews, 1259 neutral reviews, and 1242 negative reviews. Based on the results of the naive Bayes classifier method and testing with the confusion matrix, an accuracy value of 79% has been obtainednprecision 77%, recall 86%, and f1-score 81% on positive sentiment with support 2127. For neutral sentiment with an accuracy value of 83%, precision 87%, and recall 85% with support 1209, while for negative sentiment is with an accuracy value of 78%, precision 64%, and recall 70% with support 1513. From this data it is obtained micro AVG values for precision 80%, recall 79%, f1-score 79%, and support 4849, then for weighted average for precision 79%, recall 79%, f1- score 79%, and support 4849.

Full Text:

PDF 31-37

References


S. Wahyu Handani, D. Intan Surya Saputra, Hasirun, R. Mega Arino, and G. Fiza Asyrofi Ramadhan, “Sentiment analysis for go-jek on google play store,” J. Phys. Conf. Ser., vol. 1196, no. 1, 2019, doi: 10.1088/1742-6596/1196/1/012032.

B. Gunawan, H. S. Pratiwi, and E. E. Pratama, “Sistem Analisis Sentimen spada Ulasan Produk Menggunakan Metode Naive Bayes,” J. Edukasi dan Penelit. Inform., vol. 4, no. 2, p. 113, 2018, doi: 10.26418/jp.v4i2.27526.

Indonesiabaik. Pengguna Internet di Indonesia Makin Tinggi. https://indonesiabaik.id/infografis/pengguna-internet-di-indonesia-makin-tinggi. 2023. Diakses pada tanggal 10 Januari 2023

Indonesiainside. Riset Google: Nilai Ekonomi Internet RI Tumbuh Tercepat di ASEAN. 2019. https://indonesiainside.id/ekonomi/2019/10/13/riset-google-nilai-ekonomi-internet-ri-tumbuh-tercepat-di-asean Diakses pada tanggal 10 Januari 2023

N. Herlinawati, Y. Yuliani, S. Faizah, W. Gata, and S. Samudi, “Analisis Sentimen Zoom Cloud Meetings di Play Store Menggunakan Naïve Bayes dan Support Vector Machine,” CESS (Journal Comput. Eng. Syst. Sci., vol. 5, no. 2, p. 293, 2020, doi: 10.24114/cess.v5i2.18186.

D. Pratmanto, R. Rousyati, F. F. Wati, A. E. Widodo, S. Suleman, and R. Wijianto, “App Review Sentiment Analysis Shopee Application in Google Play Store Using Naive Bayes Algorithm,” J. Phys. Conf. Ser., vol. 1641, no. 1, 2020, doi: 10.1088/1742-6596/1641/1/012043.

Rahmatulloh, RN Shofa, Darmawan. Sentiment Analysis of Ojek Online User Satisfaction Based on the Naïve Bayes and Net Brand Reputation Method. 9th International Conference on Information and Communication Technology (ICoICT). 2021.

R Akbar, RN Shofa, MI Paripurna. The implementation of Naïve Bayes algorithm for classifying tweets containing hate speech with political motive. The 4th the International Conference on Sustainable Engineering and Creative Computing (ICSECC ). 2019.

A. Rahman, E. Utami, and S. Sudarmawan, “Sentimen Analisis Terhadap Aplikasi pada Google Playstore Menggunakan Algoritma Naïve Bayes dan Algoritma Genetika,” J. Komtika (Komputasi dan Inform., vol. 5, no. 1, pp. 60–71, 2021, doi: 10.31603/komtika.v5i1.5188.

D. Dwimarcahyani, T. Badriyah and T. Karlita, "Classification On Category Of Public Responses On Television Program Using Naive Bayes Method," 2019 International Electronics Symposium (IES), Surabaya, Indonesia, 2019, pp. 225-231, doi: 10.1109/ELECSYM.2019.8901576.

F. S. Jumeilah, "Klasifikasi Opini Masyarakat Terhadap Jasa Ekspedisi JNE dengan Naïve Bayes," JSINBIS (Jurnal Sistem Informasi Bisnis), vol. 8, no. 1, pp. 92-98, Apr. 2018. https://doi.org/10.21456/vol8iss1pp92-98

V.A Fitri, R. Andreswari, M.A. Hasibuan Sentiment Analysis of Social Media Twitter with Case of AntiLGBT Campaign in Indonesia using Naïve Bayes, Decision Tree, and Random Forest Algorithm DOI:10.1016/j.procs.2019.11.181

A. Harun and D. P. Ananda, “Analysis of Public Opinion Sentiment About Covid-19 Vaccination in Indonesia Using Naïve Bayes and Decission Tree Analisa Sentimen Opini Publik Tentang Vaksinasi Covid-19 di Indonesia Menggunakan Naïve Bayes dan Decission Tree,” Indones. J. Mach. Learn. Comput. Sci., vol. 1, no. April, pp. 58–63, 2021

P. P. E. Indarbensyah, And N. Rochmawati, “Penerapan N-Gram menggunakan Algoritma Random Forest dan Naive Bayes Classifier pada Analisis Sentimen Kebijakan PPKM 2021,” J. of Informatics and Computer Science, Vol. 2, No. 4, 2021

D. A. Muthia, “Analisis Sentimen Pada Review Buku Menggunakan Algoritma Naive Bayes,” J. Paradigma, Vol.

, No. 1, 2014.

Adhi dan Eri. Analisis Sentimen Twitter Menggunakan Text Mining Dengan Algoritma Naïve Bayes Classifier. 2018.

Chakra A. S., , Gupta u., & Kumar, P. A. Analysing Stock Market. Movement Using Twitter Sentiment Analysis And Time Series Forecasting. 2018.

Fauziah Afshoh. Analisa Sentimen menggunakan Naïve Bayes Untuk Melihat Persepsi Masyarakat Terhadap Kenaikan Harga Jual Rokok Pada Media Sosial

Gunawan, Fauzi, & Adikara. Analisis Sentimen Pada Ulasan Aplikasi Mobile Menggunakan Naive Bayes dan Normalisasi Kata Berbasis Levenshtein Distance (Studi Kasus Aplikasi BCA Mobile). 2017.

L. Dey, S. Chakraborty, A. Biswas, B. Bose, and S. Tiwari. “Sentiment Analysis of Review Datasets Using Naïve Bayes‘ and K-NN Classifie. 2016.

Suryadi, Andri; Harahap, Erwin. Sistem Rekomendasi Penerimaan Mahasiswa Baru Menggunakan Naive Bayes Classifier di Institut Pendidikan Indonesia. 2018.

D Pramita, R Saptono, R Anggrainingsih. Paramita Dwi, Saptono. ACADEMIC ARTICLES CLASSIFICATION USING NAIVE BAYES CLASSIFIER (NBC) METHOD. ITSMART. Jurnal Ilmiah Teknologi dan Informasi. 2018.

AP Wijaya, HA Santoso. Naive Bayes Classification pada Klasifikasi Dokumen Untuk Identifikasi Konten E-Government. Journal of Applied Intelligent System, Vol.1, No. 1, 2016

NC Siregar, RRA Siregar, MYD Sudirman. Implementasi Metode Naive Bayes Classifier (NBC) Pada Komentar Warga Sekolah Mengenai Pelaksanaan Pembelajaran Jarak Jauh (PJJ). Jurnal Teknologia Aliansi Perguruan Tinggi (APERTI) BUMN. 2020

SK Wardani, YA Sari, Indriati. Analisis Sentimen menggunakan Metode Naive Bayes Classifier terhadap Review Produk Perawatan Kulit Wajah menggunakan Seleksi Fitur N-gram dan Document Frequency Thresholding. Jurnal Pengembangan Teknologi dan Ilmu Komputer Universitas Brawijaya. 2021.




DOI: https://doi.org/10.37058/jaisi.v1i1.8993

Refbacks

  • There are currently no refbacks.


International Journal of Applied Information Systems and Informatics (JAISI)
Department of Information Systems, Faculty of Engineering, Siliwangi University Tasikmalaya
email: jaisi@unsil.ac.id

Jalan Siliwangi No. 24 Kelurahan Kahuripan Kecamatan Tawang Kota Tasikmalaya 46115

This work is licenced under a Creative Commons Attribution 4.0 International Licence