Application of Content-Based Filtering for Moisturizer Recommendation System Based on Skin Type Suitability

Muhammad Edi Iswanto, Azzahra Putri Latifah, Andi Nur Rachman, Genta Nazwar Tarempa

Abstract


Many users face significant challenges when trying to select the most suitable moisturizer for their skin. This difficulty often arises due to the overwhelming variety of available products on the market, combined with a lack of personalized information that could guide users toward the best choice. To address this issue, the present study aims to develop a recommendation system based on the Content-Based Filtering approach, which is specifically designed to align the benefits of moisturizer products with the unique needs of users' skin types. The data for this study were collected manually from 17 moisturizer products featured on the Sociolla e-commerce platform. Each product was carefully analyzed according to the descriptive information provided, including the benefits claimed and the skin types for which the product is recommended. The methodology involved several important steps: preprocessing the text from product descriptions, applying TF-IDF to assign term weights, and calculating cosine similarity scores between the user’s skin profile and product attributes. The analysis revealed that products such as D10 and D6, which yielded the highest similarity values, are strongly aligned with particular skin types. The resulting system demonstrates its ability to generate relevant and personalized product suggestions without the need for prior user preference data. This study concludes that using descriptive content as the foundation for recommendation logic can significantly enhance accuracy and targeting. Future enhancements may involve expanding the product database, integrating user-generated reviews, and leveraging machine learning techniques to produce even more adaptive and intelligent recommendations.

Full Text:

PDF (25-29)

References


M. R. Farhan, A. W. Widodo, and M. A. Rahman, “Ekstraksi Ciri Pada Klasifikasi Tipe Kulit Wajah Menggunakan Metode Haar Wavelet,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 3, pp. 2903–2909, 2019.

A. Anton, N. F. Nissa, A. Janiati, N. Cahya, and P. Astuti, “Application of Deep Learning Using Convolutional Neural Network (CNN) Method For Women’s Skin Classification,” Sci. J. Informatics, vol. 8, no. 1, pp. 144–153, 2021, doi: 10.15294/sji.v8i1.26888.

D. A. N. Safitri, R. Halilintar, and L. S. Wahyuniar, “Sistem Rekomendasi Skincare Menggunakan Metode Content-Based Filtering dan Algoritma Apriori,” Semin. Nas. Inov. Teknol. (SEMNAS INOTEK), pp. 242–248, 2021, [Online]. Available: https://proceeding.unpkediri.ac.id/index.php/inotek/article/view/1136

F. B. A. Larasati and H. Februariyanti, “Sistem Rekomendasi Product Emina Cosmetics Dengan Menggunakan Metode Content - Based Filtering,” J. Manaj. Inform. dan Sist. Inf., vol. 4, no. 1, p. 45, 2021, doi: 10.36595/misi.v4i1.250.

N. Azizah and A. F. Rozi, “Sistem Rekomendasi Produk Somethinc Menggunakan Metode Content-based Filtering,” J. Teknol. Dan Sist. Inf. Bisnis, vol. 6, no. 3, pp. 461–468, 2024, doi: 10.47233/jteksis.v6i3.1411.

H. Jamshed, M. S. A. Khan, M. Khurram, S. Inayatullah, and S. Athar, “Data Preprocessing: A preliminary step for web data mining,” 3C Tecnol. innovación Apl. a la pyme, no. May 2019, pp. 206–221, 2019, doi: 10.17993/3ctecno.2019.specialissue2.206-221.

A. F. AlShammari, “Implementation of Keyword Extraction using Term Frequency-Inverse Document Frequency (TF-IDF) in Python,” Int. J. Comput. Appl., vol. 185, no. 35, pp. 9–14, 2023, doi: 10.5120/ijca2023923137.

L. Suryani and K. Edy, “Pengembangan Aplikasi ‘Lost & Found’ Berbasis Android Dengan Menggunakan Metode Term Frequency – Inverse Document Frequency (Tf-Idf) Dan Cosine Similarity,” Electro Luceat, vol. 6, no. 2, pp. 190–204, 2020, doi: 10.32531/jelekn.v6i2.232.

M. A. Rofiqi, A. C. Fauzan, A. P. Agustin, and A. A. Saputra, “Implementasi Term-Frequency Inverse Document Frequency (TF-IDF) Untuk Mencari Relevansi Dokumen Berdasarkan Query,” Ilk. J. Comput. Sci. Appl. Informatics, vol. 1, no. 2, pp. 58–64, 2019, doi: 10.28926/ilkomnika.v1i2.18.

S. F. Larasati, U. R. Safitri, and L. P. Rahayu, “PENGARUH KUALITAS PRODUK, PROMOSI DAN POTONGAN HARGA TERDADAP KEPUTUSAN PEMBELIAN PRODUK WARDAH KOSMETIK (Studi Kasus Pada Keputusan Pembelian Produk Wardah Kosmetik Di Toko Eviaa Cosmetik Kartasura),” EKOBIS J. Ilmu Manaj. dan Akunt., vol. 9, no. 2, pp. 184–193, 2021, doi: 10.36596/ekobis.v9i2.595.

M. Khatri, “Cosine Similarity Function For The Temporal Dynamic Web Data,” vol. 3, no. 8, pp. 315–318, 2012.




DOI: https://doi.org/10.37058/jaisi.v3i1.15531

Refbacks

  • There are currently no refbacks.


International Journal of Applied Information Systems and Informatics (JAISI)
Department of Information Systems, Faculty of Engineering, Siliwangi University Tasikmalaya
email: [email protected]

Jalan Siliwangi No. 24 Kelurahan Kahuripan Kecamatan Tawang Kota Tasikmalaya 46115

This work is licenced under a Creative Commons Attribution 4.0 International Licence