Implementation of Neural Collaborative Filtering for Social Aid Recipient Recommendation

Erick Febriyanto, Genta Nazwar Tarempa, Euis Nur Fitriani Dewi, Muhammad Al-Husaini, Rifda Tri Faishal

Abstract


Social assistance needs system accurate recommendations for ensure distribution appropriate target. Research This aims to implement Neural Collaborative Filtering (NCF) to recommend recipient help social based on integration of dynamic parameters of poverty data. The NCF method was chosen Because his ability combines Generalized Matrix Factorization (GMF) and Multi-Layer Perceptron (MLP) to catch non-linear relationship between data. The dataset is taken from 845 recipients assistance in Cijulang Village, District Ciamis, with criteria covering employment, income, health, and family history assistance. The preprocessing stage includes data cleaning, label encoding, one-hot encoding, and data splitting (training-validation 80:20). The NCF architecture is built with embedding layer (dimension 32), hidden layer MLP (128-64-32 neurons), and output layer that combines GMF and MLP. Evaluation using Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The results show that the model achieves RMSE 0.63 and MAE 0.47 on the training data, but overfitting occurred with a validation RMSE of 1.40 and MAE of 1.24. Analysis indicates the need for hyperparameter optimization (e.g., regulation, dropout rate) for an increase in generalization. Findings This prove NCF potential in increase accuracy recommendation help social, at the same time highlight importance data handling no balance and sparsity in context poverty. Implications study covers improvement transparency distribution assistance and reduction jealousy social through recommendation data -based. This study gives contribution methodological in NCF adaptation for sector public.

Full Text:

PDF (43-49)

References


TIRUAN MULTI-LAYER PERCEPTRON UNTUK PREDIKSI PENYINARAN MATAHARI KOTA BANDUNG. KOMPUTA : Jurnal Ilmiah Komputer Dan Informatika, 12(1).

Bobadilla, J., Gutiérrez, A., Alonso, S., & González-Prieto, Á. (n.d.). Neural Collaborative Filtering Classification Model to Obtain Prediction Reliabilities.

Chen, H., Shi, S., Li, Y., & Zhang, Y. (2021). Neural collaborative reasoning. The Web Conference 2021 - Proceedings of the World Wide Web Conference, WWW 2021, 1516–1527. https://doi.org/10.1145/3442381.3449973

Dzumiroh, L. (2012). (n.d.). PENERAPAN METODE COLLABORATIVE FILTERING.

Februariyanti, H., Dwi Laksono, A., Sasongko Wibowo, J., & Siswo Utomo, M. (2021). IMPLEMENTASI METODE COLLABORATIVE FILTERING UNTUK SISTEM REKOMENDASI PENJUALAN PADA TOKO MEBEL. www.unisbank.ac.id

Fkih, F. (2021). Similarity measures for Collaborative Filtering-based Recommender Systems: Review and experimental comparison. In Journal of King Saud University - Computer and Information Sciences. King Saud bin Abdulaziz University. https://doi.org/10.1016/j.jksuci.2021.09.014

Fkih, F. (2021). Similarity measures for Collaborative Filtering-based Recommender Systems: Review and experimental comparison. In Journal of King Saud University - Computer and Information Sciences. King Saud bin Abdulaziz University. https://doi.org/10.1016/j.jksuci.2021.09.014

He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T. S. (2017). Neural collaborative filtering. 26th International World Wide Web Conference, WWW 2017, 173–182. https://doi.org/10.1145/3038912.3052569

Irfan, M., Dwi C, A., & Fika, H. R. (n.d.). METODE COLLABORATIVE FILTERING.

Nugroho, D. A., Lubis, C., & Perdana, N. J. (2024). SISTEM REKOMENDASI FILM MENGGUNAKAN METODE NEURAL COLLABORATIVE FILTERING MOVIE RECOMMENDATION SYSTEM USING NEURAL COLLABORATIVE FILTERING. Journal of Information Technology and Computer Science (INTECOMS), 7(3).

Pamuji, A. (n.d.). SISTEM REKOMENDASI KREDIT PERUMAHAN RAKYAT DENGAN MENGGUNAKAN METODE COLLABORATIVE FILTERING.

Rahmawati, S., Nurjanah, D., & Rismala, R. (2018). Analisis dan Implementasi pendekatan Hybrid untuk Sistem Rekomendasi Pekerjaan dengan Metode Knowledge Based dan Collaborative Filtering. Indonesian Journal on Computing (Indo-JC), 3(2), 11. https://doi.org/10.21108/indojc.2018.3.2.210

Rendle, S., Freudenthaler, C., Gantner, Z., & Schmidt-Thieme, L. (2009). BPR: Bayesian personalized ranking from implicit feedback. Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, 452–461.

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 42(8), 30–37. https://doi.org/10.1109/MC.2009.263

Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep learning based recommender system: A survey and new perspectives. ACM Computing Surveys (CSUR), 52(1), 1–38. https://doi.org/10.1145/3285029

Sedhain, S., Menon, A. K., Sanner, S., & Xie, L. (2015). AutoRec: Autoencoders Meet Collaborative Filtering. In Proceedings of the 24th International Conference on World Wide Web, 111–112.

Wang, H., Wang, N., & Yeung, D. Y. (2015). Collaborative deep learning for recommender systems. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1235–1244. https://doi.org/10.1145/2783258.2783273

Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734–749. https://doi.org/10.1109/TKDE.2005.99

Ricci, F., Rokach, L., & Shapira, B. (2015). Recommender Systems Handbook. Springer. https://doi.org/10.1007/978-1-4899-7637-6

Gunawan, D., & Basuki, R. (2020). Penerapan Neural Collaborative Filtering pada Sistem Rekomendasi Buku Berbasis Web. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 4(3), 524–531. https://doi.org/10.29207/resti.v4i3.1987

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. Proceedings of the 10th International Conference on World Wide Web, 285–295.

Schafer, J. B., Konstan, J., & Riedl, J. (2001). E-commerce recommendation applications. Data Mining and Knowledge Discovery, 5, 115–153.

Alfarizi, M. A., & Wibowo, A. (2022). Sistem Rekomendasi Penyaluran Bantuan Sosial Menggunakan Metode Hybrid Filtering. Jurnal Ilmiah Teknologi dan Rekayasa, 17(2), 33–41.

Putra, R. H., & Nasution, R. A. (2021). Rancang Bangun Sistem Rekomendasi Penerima Bantuan Sosial Berbasis Machine Learning. Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), 8(4), 599–606. https://doi.org/10.25126/jtiik.202184534

Widodo, A. R., & Prasetyo, E. (2023). Penggunaan Algoritma Deep Learning pada Sistem Rekomendasi untuk Program Bantuan Pemerintah. Jurnal Sistem Informasi dan Komputerisasi Akuntansi (JSIKA), 12(1), 20–28.




DOI: https://doi.org/10.37058/jaisi.v3i2.16944

Refbacks

  • There are currently no refbacks.


International Journal of Applied Information Systems and Informatics (JAISI)
Department of Information Systems, Faculty of Engineering, Siliwangi University Tasikmalaya
email: jaisi@unsil.ac.id

Jalan Siliwangi No. 24 Kelurahan Kahuripan Kecamatan Tawang Kota Tasikmalaya 46115

This work is licenced under a Creative Commons Attribution 4.0 International Licence