Analisis Kuantitatif Model SEMF: Studi Perbandingan Terhadap Data Eksperimen Massa Nuklida
Abstract
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Activities Based on Empirical Data to Determine Coefficients in Semi-Empirical Mass Formula. Journal of Research: THE BEDE ATHENAEUM, 13(1), 71–83. https://doi.org/10.5958/0976-1748.2022.00007.8
Guo, L., Wu, X., & Zhao, P. (2022). Nuclear Mass Predictions of the Relativistic Density Functional Theory with the Kernel Ridge Regression and the Application to r-Process Simulations. Symmetry, 14(6), 1078. https://doi.org/10.3390/sym14061078
Hein, M., Pusch, A., & Heusler, S. (2022). Modeling in nuclear physics: a visual approach to the limitations of the semi-empirical mass formula. European Journal of Physics, 43(3), 035801. https://doi.org/10.1088/1361-6404/ac4d7c
Hu, B. S., Sun, Z. H., Hagen, G., & Papenbrock, T. (2024). Ab initio computations of strongly deformed nuclei near 80Zr. Physical Review C, 110(1), L011302. https://doi.org/10.1103/PhysRevC.110.L011302
Kasuya, H., & Yoshida, K. (2021). Hartree–Fock–Bogoliubov theory for odd-mass nuclei with a time-odd constraint and application to deformed halo nuclei. Progress of Theoretical and Experimental Physics, 2021(1). https://doi.org/10.1093/ptep/ptaa163
Kirson, M. W. (2008). Mutual influence of terms in a semi-empirical mass formula. Nuclear Physics A, 798(1–2), 29–60. https://doi.org/10.1016/j.nuclphysa.2007.10.011
Krane, K. S. (1988). Introductory Nuclear Physics. John Wiley & Sons.
Levin, C. (2004). Basic Physics of Radionuclide Imaging. In Emission Tomography (pp. 53–88). Elsevier. https://doi.org/10.1016/B978-012744482-6.50007-7
Munoz, J. M., Udrescu, S. M., & Garcia Ruiz, R. F. (2025). Discovering nuclear models from symbolic machine learning. Communications Physics, 8(1), 101. https://doi.org/10.1038/s42005-025-02023-2
Pandey, B., Giri, S., Pant, R. D., Jalan, M., Chaudhary, A., & Adhikari, N. P. (2024). Prediction of binding energy using machine learning approach. AIP Advances, 14(10). https://doi.org/10.1063/5.0230425
Pinedo-Vega, J., Ríos-Martínez, C., Talamantes-Carlos, M., Mireles-García, F., Dávila-Rangel, J., & Badillo-Almaraz, V. (2016). Semi-empirical Nuclear Mass Formula: Simultaneous Determination of 4 Coefficients. Asian Journal of Physical and Chemical Sciences, 1(2), 1–10. https://doi.org/10.9734/AJOPACS/2016/31266
Wang, M., Huang, W. J., Kondev, F. G., Audi, G., & Naimi, S. (2021). The AME 2020 atomic mass evaluation (II). Tables, graphs and references*. Chinese Physics C, 45(3), 030003. https://doi.org/10.1088/1674-1137/abddaf
Yiu, T. C., Liang, H., & Lee, J. (2024). Nuclear mass predictions based on a deep neural network and finite-range droplet model (2012)*. Chinese Physics C, 48(2), 024102. https://doi.org/10.1088/1674-1137/ad021c
Yüksel, E., Soydaner, D., & Bahtiyar, H. (2024). Nuclear mass predictions using machine learning models. Physical Review C, 109(6), 064322. https://doi.org/10.1103/PhysRevC.109.064322
DOI: https://doi.org/10.37058/diffraction.v7i2.16712
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Mardiana Napirah, Sayahdin Alfat, Naim Naim, Abdin Abdin, Wa Ode Israwati, Zaldin Zaldin

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal ini terindeks oleh:
Pendidikan Fisika FKIP Univesitas Siliwangi
Gedung FKIP lantai 1, Jl. Siliwangi No. 24, Kota Tasikmalaya - 46115
email: diffraction.fisika@unsil.ac.id
DIFFRACTION: Journal for Physics Education and Applied Physics
terlisensi creative commons attribution-share alike 4.0 international
