"CASE STUDY: THE MOST POPULAR METHOD FOR SOLVING SYSTEMS OF LINEAR EQUATIONS"
Abstract
The system of linear equations is a material that is studied from the junior high school level to the lecture level so that this material is very important material in learning mathematics. The purpose of this research is to find out what methods are easy and widely used by students in solving the system of linear equations. This research is a qualitative research with case study type. The participants of this study were 10 students of Indraprasta PGRI university. Data were collected by task-based interviews which aimed to dig deeper into the easiest and fastest method to solve the system of linear equations. The data analysis technique used in this study uses Bogdan & Biklen technique with stages: data reduction, coding, determining themes, concluding. The results showed that there are 5 methods that can be used in solving the system of linear equations, namely: Cramer Method, Ajoin Matrix Method, Gaus Method, and Gaus Jordan Method. Of the four methods, according to the results of student tests, the best value is obtained with the Cramer Method, this is reinforced by the results of interviews conducted by students who said that the Cramer method is the easiest and fastest method to solve the system of linear equations. While the Gaus method is the most difficult method to solve the system of linear equations.
Keywords: System of linear equations, Method, Case Study
References
Buku:
Walidin, W., Saifullah, & Tabrani. (2015). Metodologi penelitian kualitatif dan grounded theory. FTK Ar-Raniry Press.
Jurnal Online dengan DOI:
Brunetti, M. (2014). Old and new proofs of Cramer’s Rule. Applied Mathematical Sciences, 8(133–136), 6689–6697. https://doi.org/10.12988/ams.2014.49683
Cordero, R. D., Rellon, L. R. S., & Deluao, J. V. B. (2020). SOLVING A LINEAR SYSTEM WITH NON-SQUARE COEFFICIENT MATRIX USING DETERMINANTS. Asia Pacific Journal of Mathematics, 7. https://doi.org/10.28924/APJM/7-22
Fadli, M. R. (2021). Memahami desain metode penelitian kualitatif. 21(1), 33–54. https://doi.org/10.21831/hum.v21i1.
Fahrudin, D., Mardiyana, & Pramudya, I. (2019). The analysis of mathematic problem solving ability by polya steps on material trigonometric reviewed from self-regulated learning. Journal of Physics: Conference Series, 1254(1). https://doi.org/10.1088/1742-6596/1254/1/012076
Maharani, N. (2020). Perbandingan Tingkat Pemahaman Mahasiswa STMIK STIKOM Indonesia Pada Metoda Sarrus dan Metoda Cramer pada Penyelesaian Sistem Persamaan Linier. PENDIPA Journal of Science Education, 4(2), 66–73. https://doi.org/10.33369/pendipa.4.2.66-73
Marrakchi, S., & Kaaniche, H. (2023). Solving Band Diagonally Dominant Linear Systems Using Gaussian Elimination: Shared-Memory Parallel Programming with OpenMP. Proceedings - IEEE Symposium on Computers and Communications, 2023-July, 675–680. https://doi.org/10.1109/ISCC58397.2023.10218238
Urdaletova, A., Sklyar, S., Kydyraliev, S., & Burova, E. (2023). Using the Cramer-Gauss Method to Solve Systems of Linear Algebraic Equations with Tridiagonal and Five-Diagonal Coefficient Matrices. In Lecture Notes in Networks and Systems: Vol. 544 LNNS. https://doi.org/10.1007/978-3-031-16075-2_31
Jurnal Online tanpa DOI:
Ariani, S., Hartono, Y., & Hiltrimartin, C. (2017). KEMAMPUAN PEMECAHAN MASALAH MATEMATIKA SISWA PADA PEMBELAJARAN MATEMATIKA MENGGUNAKAN STRATEGI ABDUKTIF-DEDUKTIF DI SMA NEGERI 1 INDRALAYA UTARA. 3(1), 25–34.
Mahmudah, W., Matematika, P. P., & Gresik, U. Q. (2020). Analisis Kesalahan dalam Menyelesaikan Soal Sistem Persamaan Linear pada Aljabar Linier Elementer. 5, 449–456.
Misnawati. (2018). Metode Cramer Untuk Menentukan Solusi Sistem Persamaan Interval Linear. Buletin Ilmiah Math. Stat. Dan Terapannya (Bimaster), 07(4), 247–254.
Setiawan, S. (2015). Meningkatkan Kemampuan Berpikir Kritis Matematis Siswa SMP dengan Menggunakan Model Penemuan Terbimbing. Jurnal Ilmiah UPT P2M STKIP Siliwangi, 2(1).
Zakiyah, S., Hidayat, W., & Setiawan, W. (2019). Analisis Kemampuan Pemecahan Masalah dan Respon Peralihan Matematik dari SMP ke SMA pada Materi SPLTV Mosharafa : Jurnal Pendidikan Matematika Mosharafa : Jurnal Pendidikan Matematika. 8, 227–238.
Artikel dalam Prosiding Online:
Morancho, E. (2015). A vector implementation of Gaussian elimination over GF(2): Exploring the design-space of Strassen’s algorithm as a case study. Proceedings - 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, PDP 2015, 111–118. https://doi.org/10.1109/PDP.2015.24
Nagari, A., Elhanany, I., Thompson, B., Li, F., & King, T. (2008). A parallel processing architecture for solving large-scale linear systems. Proceedings of the 2008 International Conference on Parallel and Distributed Processing Techniques and Applications, PDPTA 2008, 307–312.
DOI: https://doi.org/10.37058/jarme.v7i1.13606
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Authentic Research on Mathematics Education (JARME)
Program Studi Magister Pendidikan Matematika, Pascasarjana Universitas Siliwangi
Jl. Siliwangi no. 24 Kota Tasikmalaya - 46115
email: [email protected]
e-ISSN: 2655-7762
Licensed under a Creative Commons Attribution 4.0 International License
StatCounter:
Detail
Indexed by :