DESIGNING HYPOTHETICAL LEARNING TRAJECTORIES FOR SET THEORY USING SCHOOL SNACK CONTEXTS IN MIDDLE SCHOOL

Dedi Muhtadi, Sukirwan Sukirwan, Eko Yulianto, Rival Muhamad Fauzi

Abstract


This study aims to design and implement Hypothetical Learning Trajectory (HLT) on set material with the context of school snacks for Junior High School students. The main focus of this study is to support students' understanding of basic set concepts, such as subsets, intersections, and unions, through a contextual approach that is relevant to students' daily lives. The research method used is educational design research, which includes the planning, implementation, and analysis phases of learning outcomes. The subjects of the study were grade VII students at a junior high school in Tasikmalaya City. The research instruments included: observation sheets, concept understanding tests, and interviews to explore students' thinking processes during learning. The results showed that the use of the school snack context was relevant to the topic of sets and was able to increase students' interest and motivation in learning set material. Students' conceptual understanding also increased significantly, especially in identifying set elements, as well as understanding intersections and unions between sets through visual representations and group activities. The discussion of these results emphasizes that HLT with everyday contexts, such as school snacks, provides opportunities to link abstract material to students' real experiences, thus facilitating meaningful learning. The implementation of this research provides practical implications for teachers in designing context-based learning that can be used for other materials, as well as a reference for developing a curriculum that is more relevant to life.

 


Full Text:

PDF

References


Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183–198. https://doi.org/10.1016/j.learninstruc.2006.03.001

Gravemeijer, K., & Cobb, P. (2006). Design research from a learning design perspective. Netherlands Organization for Scientific Research. https://doi.org/10.4324/9780203088364-12

Hattie, J. A. C. (2009). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. Routledge. https://doi.org/10.4324/9780203887332

Lestari, I., Kesumawati, N., & Ningsih, Y. L. (2020). Mathematical representation of grade 7 students in set theory topics through problem-based learning. Infinity Journal, 9(1), 103–110. https://doi.org/10.22460/infinity.v9i1.p103-110

Manurung, M. M., Windria, H., & Arifin, S. (2019). Desain pembelajaran materi himpunan dengan pendekatan Realistic Mathematics Education (RME) untuk kelas VII. Jurnal Derivat: Jurnal Matematika Dan Pendidikan Matematika, 5(1), 19–29. https://doi.org/10.31316/j.derivat.v5i1.143

Manurung, S. L., Maharani, D., Alihandro, J. V., & Fatinah, S. (2024). kajian literatur: Pemahaman melalui diagram venn dalam pembelajaran. Jurnal Review Pendidikan Dan Pengajaran, 7(4), 15160–15164. https://doi.org/10.31004/jrpp.v7i4.36418

Mesak, R. (2019). Desain pembelajaran pada materi himpunan menggunakan model problem based learning. Asimtot : Jurnal Kependidikan Matematika, 1(2), 93–104. https://doi.org/10.30822/asimtot.v1i2.274

Mumu, J., & Tanujaya, B. (2018). Desain pembelajaran materi operasi pada himpunan mengunakan permainan “lemon nipis.” Journal of Honai Math, 1(1), 14. https://doi.org/10.30862/jhm.v1i1.770

Pawa, S., Laosinchai, P., Nokkaew, A., & Wongkia, W. (2020). Students’ conception of set theory through a board game and an active-learning unit. International Journal of Innovation in Science and Mathematics Education, 28(1), 1–15. https://doi.org/10.30722/ijisme.28.01.001

Sukirwan, Fitri, P. R., Warsito, & Saleh, H. (2022). Pembelajaran himpunan melalui perancangan hypothetical learning trajectory menggunakan pendekatan matematika realistik. Journal of Authentic Research on Mathematics Education (JARME), 4(1), 79–97. https://doi.org/10.37058/jarme.v4i1.3675

Reinke, L. T. (2019). Toward an analytical framework for contextual problem-based mathematics instruction. Mathematical Thinking and Learning, 21(4), 265–284. https://doi.org/10.1080/10986065.2019.1576004

Bingolbali, E., Demir, G., & Monaghan, J. (2021). Knowledge of Sets: a Didactic Phenomenon. International Journal of Science and Mathematics Education, 19(6), 1187–1208. https://doi.org/10.1007/S10763-020-10106-5

Clements, D. H., & Sarama, J. (2004). Learning Trajectories in Mathematics Education. Mathematical Thinking and Learning, 6(2), 81–89. https://doi.org/10.1207/S15327833MTL0602_1

Romero, T., Buelvas, I., Cifuentes Álvarez, W. D., García Castro, H. J., García Castro, H. J., & Peralta Luna, Z. K. (2024). Context of Contextualized Teaching Situations in the Initial Training of Mathematics Teachers at the Popular University of Cesar. Evolutionary Studies in Imaginative Culture, 1443–1464. https://doi.org/10.70082/esiculture.vi.1555

Davis, J. D. (2007). Real-World Contexts, Multiple Representations, Student-Invented Terminology, and Y-Intercept. Mathematical Thinking and Learning, 9(4), 387–418. https://doi.org/10.1080/10986060701533839

Roseno, A., Carraway-Stage, V., Hoerdeman, C., Díaz, S. R., Geist, E., & Duffrin, M. W. (2015). Applying mathematical concepts with hands-on, food-based science curriculum. School Science and Mathematics, 115(1), 14–21. https://doi.org/10.1111/SSM.12097

Clements, D. H., & Sarama, J. (2004). Learning Trajectories in Mathematics Education. Mathematical Thinking and Learning, 6(2), 81–89. https://doi.org/10.1207/S15327833MTL0602_1

Fey, J. T., Wheeler, D., Howson, G., Keitel, C., & Kilpatrick, J. (1982). Curriculum Development in Mathematics. Journal for Research in Mathematics Education, 13(2), 153. https://doi.org/10.2307/748362

Pemahaman matematika melalui pendekatan contextual teaching and learning siswa kelas viic smp negeri 2 maesan. (2023). Science, 3(1), 81–85. https://doi.org/10.51878/science.v3i1.2072

Rodríguez-Muñiz, L. J., Muñiz-Rodríguez, L., García-Alonso, I., López-Serentill, P., Concha Vásquez, C. A., & Alsina, Á. (2022). Navigating between abstraction and context in secondary school statistics education (Nadando entre dos orillas: abstracción y contexto en educación estadística en Secundaria). Cultura Y Educacion, 34(3), 689–725. https://doi.org/10.1080/11356405.2022.2058794

Yu, K. C., Fan, S. C., & Lin, K. Y. (2015). Enhancing Students’ Problem-Solving Skills through Context-Based Learning. International Journal of Science and Mathematics Education, 13(6), 1377–1401. https://doi.org/10.1007/S10763-014-9567-4

Roche, A., Gervasoni, A., & Kalogeropoulos, P. (2021). Factors that promote interest and engagement in learning mathematics for low-achieving primary students across three learning settings. Mathematics Education Research Journal, 1–32. https://doi.org/10.1007/S13394-021-00402-W

Miguens, A. L. B., Piedade, J., Santos, R., & Oliva, T. L. (2024). Meaningful learning in mathematics: a study on motivation for learning and development of computational thinking using educational robotics. Educational Media International, 1–12. https://doi.org/10.1080/09523987.2024.2357472

Giberti, C., Arzarello, F., Beltramino, S., & Bolondi, G. (2024). Mathematical discussion in classrooms as a technologically-supported activity fostering participation and inclusion. Educational Studies in Mathematics. https://doi.org/10.1007/s10649-024-10356-y

Fischbein, E., & Baltsan, M. (1998). The Mathematical Concept of set and the “Collection” Model. Educational Studies in Mathematics, 37(1), 1–22. https://doi.org/10.1023/A:1003421206945

Ribeiro, M. I. C., & Passos, O. M. (2020). A Study on the Active Methodologies Applied to Teaching and Learning Process in the Computing Area. IEEE Access, 8, 219083–219097. https://doi.org/10.1109/ACCESS.2020.3036976

Cao, L., & Rorrer, A. (2018). An Active and Collaborative Approach to Teaching Discrete Structures. Technical Symposium on Computer Science Education, 822–827. https://doi.org/10.1145/3159450.3159582

Borghi, A. M., Shaki, S., & Fischer, M. H. (2022). Abstract concepts: external influences, internal constraints, and methodological issues. Psychological Research-Psychologische Forschung, 86(8), 2370–2388. https://doi.org/10.1007/s00426-022-01698-4

Borghi, A. M., Binkofski, F., Castelfranchi, C., Cimatti, F., Scorolli, C., & Tummolini, L. (2017). The challenge of abstract concepts. Psychological Bulletin, 143(3), 263–292. https://doi.org/10.1037/BUL0000089

Compen, B., Verstegen, D., Maussen, I., Hülsman, C., & Dolmans, D. (2024). Good practices for differentiated instruction in vocational education: the combined perspectives of educational researchers and teachers. International Journal of Inclusive Education. https://doi.org/10.1080/13603116.2024.2305652

de Jager, T. (2013). Guidelines to assist the implementation of differentiated learning activities in South African secondary schools. International Journal of Inclusive Education, 17(1), 80–94. https://doi.org/10.1080/13603116.2011.580465

Tobin, R., & Tippett, C. D. (2014). Possibilities and potential barriers: learning to plan for differentiated instruction in elementary science. International Journal of Science and Mathematics Education, 12(2), 423–443. https://doi.org/10.1007/S10763-013-9414-Z

Traoré, K., Lajoie, C., & Mura, R. (2007). Quelques Erreurs Pouvant Être Liées à Une Difficulté à Concevoir un Ensemble Comme un Objet Distinct De Ses Éléments Chez Des Étudiants Et Des Étudiantes Universitaires. Educational Studies in Mathematics, 64(3), 247–264. https://doi.org/10.1007/S10649-005-9018-9

Reinke, L. T. (2019). Toward an analytical framework for contextual problem-based mathematics instruction. Mathematical Thinking and Learning, 21(4), 265–284. https://doi.org/10.1080/10986065.2019.1576004

King, D., & Henderson, S. (2018). Context-based learning in the middle years: achieving resonance between the real-world field and environmental science concepts. International Journal of Science Education, 40(10), 1221–1238. https://doi.org/10.1080/09500693.2018.1470352

Yu, K. C., Fan, S. C., & Lin, K. Y. (2015). Enhancing Students’ Problem-Solving Skills through Context-Based Learning. International Journal of Science and Mathematics Education, 13(6), 1377–1401. https://doi.org/10.1007/S10763-014-9567-4

Okada, M., & Tada, M. (2014). Formative assessment method of real-world learning by integrating heterogeneous elements of behavior, knowledge, and the environment. Learning Analytics and Knowledge, 1–10. https://doi.org/10.1145/2567574.2567579




DOI: https://doi.org/10.37058/jarme.v7i1.13665

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Journal of Authentic Research on Mathematics Education (JARME)
Program Studi Magister Pendidikan Matematika, Pascasarjana Universitas Siliwangi
Jl. Siliwangi no. 24 Kota Tasikmalaya - 46115
email: [email protected]
e-ISSN: 2655-7762
Licensed under a Creative Commons Attribution 4.0 International License
StatCounter:
WebAnalytics Made Easy - StatCounter
Detail

Indexed by :

Moraref One Search BASE - Bielefeld Academich Search Engine DRJI Indexed Journal