RANDOM SIMILARITY EFFECT OF HIGH SCHOOL STUDENTS IN PROBABILITY MATERIAL

Febri Dini Wahyu Damayanti, Istimewa Septi Agyatus, Abd Qohar

Abstract


This article aims to analyze how high school students experience and manifest Random Similarity Effect (RSE) in understanding probability material as a specific form of representative bias. RSE refers to the tendency of students to choose patterns that appear intuitively random even though mathematically all possibilities have equal probability. This study uses an explicit cognitive theoretical approach, focusing on the thinking process and the emergence of cognitive bias. The subjects of the study were 36 students of class XD at SMAN 1 Turen. Data were collected by giving probability problems designed to trigger RSE bias, followed by in-depth interviews with four selected subjects. The analysis was carried out using an indicator rubric to classify students' level of understanding into three levels. The results showed that two subjects were at Level 2 (explicitly affected by RSE), one subject at Level 1 (correct answer without conceptual understanding), and one subject reached Level 0 (understanding the concept of probability logically and free from intuitive bias). These results indicate that most students are still trapped in intuitive reasoning, emphasizing the importance of a teaching approach that encourages reflective thinking and deep understanding of the concept of probability.

 


Full Text:

PDF

References


Anggraini, K. E., & Setianingsih, R. (2022). Analisis kemampuan numerasi siswa sma dalam menyelesaikan soal asesmen kompetensi minimum (AKM). MATHEdunesa, 11(3), 837-849. https://doi.org/10.26740/mathedunesa.v11n3.p837-849

Batanero, C., & Chernoff, E. (2022). Teaching probability through randomness and bias: Cognitive barriers and strategies. Educational Studies in Mathematics, 109(1), 45–63. https://doi.org/10.1007/s10649-021-10063-8

Batanero, C., & Chernoff, E. (2022). Teaching probability through randomness and bias: Cognitive barriers and strategies. Educational Studies in Mathematics, 109(1), 45–63. https://doi.org/10.1007/s10649-021-10063-8

Batanero, C., & Sanchez, E. (2022). What is the nature of high school students’ conceptions and misconceptions about probability? Springer Proceedings in Mathematics Education, 15, 201–219. https://doi.org/10.1007/0-387-24530-8_11

Baumanns, L., Pitta-Pantazi, D., Demosthenous, E., Lilienthal, A. J., Christou, C., & Schindler, M. (2024). Pattern-Recognition Processes of First-Grade Students: An Explorative Eye-Tracking Study. International Journal of Science and Mathematics Education, 22(8), 1663-1682. https://doi.org/10.1007/s10763-024-10441-x

Cartwright, H., & Viale, R. (2024). Reasoning under uncertainty: Revisiting System 1 and System 2 in education. Journal of Cognitive Education and Psychology, 23(2), 121–137. https://doi.org/10.1891/JCEP-D-23-00045

Darmawan, P., Khotimah, H., Firnanda, G., Candrama, M. (2023). Bentuk-bentuk bias berpikir dalam belajar matematika. Insight Mediatama.

Darmawan, P., Yusuf, F. (2022). Teori kognitivisme & penerapannya dalam penelitian pendidikan matematika. Insan Cendekia Nusantara.

De Neys, W. (2022). Dual Process Theory 2.0: The Evolving Science of Intuition and Reasoning. Routledge. https://doi.org/10.4324/9781003188392

De Neys, W. (2022). Dual Process Theory 2.0: The Evolving Science of Intuition and Reasoning. Routledge. https://doi.org/10.4324/9781003188392

Erbas, A. K., & Ocal, M. F. (2024). Students’ intuitively-based (mis)conceptions in probability and teachers’ awareness of them: the case of heuristics. International Journal of Mathematical Education in Science and Technology. https://doi.org/10.1080/0020739X.2022.2128454

Erbas, A. K., & Ocal, M. F. (2024). Students’ intuitively-based (mis)conceptions in probability and teachers’ awareness of them. International Journal of Mathematical Education in Science and Technology. https://doi.org/10.1080/0020739X.2022.2128454

Erbas, A. K., & Ocal, M. F. (2024). Students’ intuitively-based (mis)conceptions in probability and teachers’ awareness of them. International Journal of Mathematical Education in Science and Technology. https://doi.org/10.1080/0020739X.2022.2128454

Evans, J. St. B. T., & Stanovich, K. E. (2023). Analytical versus intuitive thinking: Developments in dual-process theory. Cognitive Psychology, 145, 101532. https://doi.org/10.1016/j.cogpsych.2023.101532

Faure, J. (2019). Logical institutions and heuristic reflections [Doctoral dissertation, Kingston University]. Kingston University Reseach Repository. https://eprints.kingston.ac.uk/45039/1/Faure-J-45039.pdf

Fischbein, E., Gazit, A. (1987) Does the teaching of probability improve probabilistic intuitions?. Educational Studies in Mathematics, 15, 1–24. https://doi.org/10.1007/BF00380436

Fusco, G., Ragni, M., & Cherubini, P. (2023). When intuition leads reasoning: Cognitive mechanisms underlying random sequence judgments. Thinking & Reasoning, 29(2), 189–207. https://doi.org/10.1080/13546783.2023.2175809

Fusco, G., Ragni, M., & Cherubini, P. (2023). When intuition leads reasoning: Cognitive mechanisms underlying random sequence judgments. Thinking & Reasoning, 29(2), 189–207. https://doi.org/10.1080/13546783.2023.2175809

Gronchi, G., Coricelli, C., & Russo, S. (2021). The random similarity effect: When randomness looks too random. Cognitive Processing, 22(3), 543–556. https://doi.org/10.1007/s10339-021-01033-7

Gronchi, G., Coricelli, C., & Russo, S. (2021). The random similarity effect: When randomness looks too random. Cognitive Processing, 22(3), 543–556. https://doi.org/10.1007/s10339-021-01033-7

Gronchi, G., Sloman, S.A. (2021). Regular and random judgements are not two sides of the same coin: Both representativeness and encoding play a role in randomness perception. Psychon Bull Rev, 28, 1707–1714. https://doi.org/10.3758/s13423-021-01934-9

Ingram, J. (2022). Randomness and probability: Exploring student teachers’ conceptions. Mathematical Thinking and Learning, 26(1), 1–19. https://doi.org/10.1080/10986065.2021.2016029

Ingram, J. (2024). Randomness and probability: exploring student teachers’ conceptions. Mathematical Thinking and Learning, 26(1), 45–61. https://doi.org/10.1080/10986065.2021.2016029

Jones, D. L., & Tarr, J. E. (2007). An examination of the levels of cogitive demand required by probability tasks in middle grades mathematics textbooks. Statistics Education Research Journal, 6(2), 4-27. https://doi.org/10.52041/serj.v6i2.482

Kahneman, D., & Sibony, O. (2021). Noise: A Flaw in Human Judgment. New York: Little, Brown Spark. https://doi.org/10.1037/h0099860

Kahneman, D., & Sibony, O. (2021). Noise: A Flaw in Human Judgment. New York: Little, Brown Spark. https://doi.org/10.1037/h0099860

Kahneman, D., & Sibony, O. (2021). Noise: A Flaw in Human Judgment. Little, Brown Spark. https://doi.org/10.1037/h0099860

Kaplar, M., Lužanin, Z., & Verbić, S. (2021). Evidence of probability misconception in engineering students—why even an inaccurate explanation is better than no explanation. International Journal of STEM Education, 8(1), 92. https://doi.org/10.1186/s40594-021-00279-y

Kartikasari, D. (2022). Berpikir analisis melalui self question. Penerbit P4I.

Kartikasari, R. (2022). Cognitive process analysis in mathematics learning: Implications for conceptual understanding. Journal of Educational Cognition Research, 7(2), 112–124.

Krajbich, I. (2024). The balance between intuition and deliberation in cognitive decision processes. Nature Reviews Psychology, 3(1), 41–56. https://doi.org/10.1038/s44159-023-00273-2

Lecoutre, M. P., & Durand, J. L. (2023). Randomness perception and intuitive heuristics: The persistence of the equiprobability bias. Psychology of Learning and Motivation, 79(2), 231–254. https://doi.org/10.1016/j.plm.2023.231254

Ludwig, C. J. H., et al. (2023). The perception of randomness: Cognitive mechanisms and educational implications. Cognitive Psychology, 140, 101528. https://doi.org/10.1016/j.cogpsych.2023.101528

Lumbantoruan, J. H. (2019). Buku Materi Pembelajaran Teori Peluang dan Kombinatorika.

Manjunath, T. C. (2025). Developing Thinking Regarding Probabilities. In Developing Statistical Thinking in Education (pp. 89–112). Springer.

Morsanyi, K., & Szucs, D. (2022). Intuition in mathematical and probabilistic reasoning. Oxford Handbook of Mathematical Cognition. Oxford University Press.

Morsanyi, K., & Szűcs, D. (2022). Intuitive reasoning and probabilistic judgment: Cognitive and educational perspectives. Educational Psychology Review, 34(4), 1975–1993. https://doi.org/10.1007/s10648-022-09693-5

Morsanyi, K., & Szűcs, D. (2022). Intuitive reasoning and probabilistic judgment: Cognitive and educational perspectives. Educational Psychology Review, 34(4), 1975–1993. https://doi.org/10.1007/s10648-022-09693-5

Munairoh, I. R., & Hastari, R. C. (2023). Berpikir intuitif siswa kelas viii dalam memecahkan masalah statistika ditinjau dari kecemasan matematika. ARMADA: Jurnal Penelitian Multidisiplin, 1(10), 1263-1271. https://doi.org/10.55681/armada.v1i10.947

Nabbout-Cheiban, M. (2017). Intuitive thinking and misconceptions of independent events: A case study of US and French pre-service teachers. International Journal of Research in Undergraduate Mathematics Education, 3(1), 34–52. https://doi.org/10.1007/s40753-016-0038-x

Natalia, A., Mampouw, H. (2024). Analisis kesalahan siswa dalam menyelesaikan soal peluang berdasarkan teori newman ditinjau dari gaya belajar. Jurnal Cendekia: Jurnal Pendidikan Matematika, 8(3), 1961-1972. https://doi.org/10.31004/cendekia.v8i3.3451

Prameswari, D. A., & Muniri, M. (2023). Karakteristik berpikir intuitif siswa dalam menyelesaikan soal matematika ditinjau dari kemampuan matematika. Lattice Journal: Journal of Mathematics Education and Applied, 3(1), 79-91. https://doi.org/10.30983/lattice.v3i1.6554

Prameswari, I., et al. (2023). The influence of intuitive reasoning on students’ probability problem solving. Journal of Mathematics Education Research, 14(3), 210–225.

Radjanae, M. (2017). Bias Penilaian dalam Proses Penilaian Kinerja 360 Derajat (Studi Kasus pada PT. Kievit Indonesia).

Shye, S., & Viale, R. (2025). The cognitive basis for decision making under risk and uncertainty: research programs & controversies. Frontiers in Psychology, 16, 1546461. https://doi.org/10.3389/fpsyg.2025.1546461

Stojanoski, B., & Cusimano, C. (2022). Perceived randomness and human pattern biases: Understanding intuitive responses to probability. Frontiers in Psychology, 13, 953412. https://doi.org/10.3389/fpsyg.2022.953412

Stojanoski, B., & Cusimano, C. (2022). Perceived randomness and human pattern biases: Understanding intuitive responses to probability. Frontiers in Psychology, 13, 953412. https://doi.org/10.3389/fpsyg.2022.953412

Tversky, A., & Kahneman, D. (1990). Judgment under uncertainty: Heuristics and biases.

Yulfiana, Y. (2016). Analisis Kesulitan Siswa Dalam Menyelesaikan Soal-Soal Volume Bangun Ruang Sisi Lengkung Pada Siswa Kelas Ix Smp Muhammadiyah 9 Ngemplak Tahun Ajaran 2015/2016 (Doctoral dissertation, Universitas Muhammadiyah Surakarta).

Zhang, H. (2024). Heuristic reasoning and probabilistic thinking: How intuition biases random judgment. Journal of Cognitive Science, 35(1), 77–93. https://doi.org/10.1007/s10339-024-01312-4




DOI: https://doi.org/10.37058/jarme.v8i1.15559

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Jurnal Penelitian Otentik Pendidikan Matematika (JARME)
Program Studi Pendidikan Matematika Universitas Siliwangi
Jl. Siliwangi no. 24 Kota Tasikmalaya - 46115
email: jarme@unsil.ac.id
e-ISSN: 2655-7762
Dilisensikan di bawah Lisensi Creative Commons Attribution 4.0 International
StatCounter: Detail
Analisis Web Menjadi Mudah - StatCounter

Diindeks oleh :

Moraref Satu Pencarian BASE - Mesin Pencari Akademik Bielefeld Jurnal Terindeks DRJI